On fractional derivatives with generalized Mittag-Leffler kernels

被引:69
|
作者
Abdeljawad, Thabet [1 ]
Baleanu, Dumitru [2 ,3 ]
机构
[1] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia
[2] Cankaya Univ, Dept Math, Ankara, Turkey
[3] Inst Space Sci, Magurele, Romania
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2018年
关键词
Fractional derivatives with generalized Mittag-Leffler kernels; Generalized Mittag-Leffler function; Laplace transform convolution; Euler-Lagrange equation; Integration by parts;
D O I
10.1186/s13662-018-1914-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractional derivatives with three parameter generalized Mittag-Leffler kernels and their properties are studied. The corresponding integral operators are obtained with the help of Laplace transforms. The action of the presented fractional integrals on the Caputo and Riemann type derivatives with three parameter Mittag-Leffler kernels is analyzed. Integration by parts formulas in the sense of Riemann and Caputo are proved and then used to formulate the fractional Euler-Lagrange equations with an illustrative example. Certain nonconstant functions whose fractional derivatives are zero are determined as well.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Dirichlet Averages of Generalized Multi-index Mittag-Leffler Functions
    Saxena, R. K.
    Any, T. K. Pog
    Ram, J.
    Daiya, J.
    ARMENIAN JOURNAL OF MATHEMATICS, 2011, 3 (04): : 174 - 187
  • [32] Integral representation of the four-parametric generalized Mittag-Leffler function
    S. Rogosin
    A. Koroleva
    Lithuanian Mathematical Journal, 2010, 50 : 337 - 343
  • [33] INTEGRAL REPRESENTATION OF THE FOUR-PARAMETRIC GENERALIZED MITTAG-LEFFLER FUNCTION
    Rogosin, S.
    Koroleva, A.
    LITHUANIAN MATHEMATICAL JOURNAL, 2010, 50 (03) : 337 - 343
  • [34] Generalizations of some fractional integral inequalities for m-convex functions via generalized Mittag-Leffler function
    Farid, Ghulam
    Abbas, Ghulam
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2018, 63 (01): : 23 - 35
  • [35] An efficient numerical method for nonlinear fractional differential equations based on the generalized Mittag-Leffler functions and Lagrange polynomials
    Li, Yu
    Zhang, Yanming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (16) : 12169 - 12184
  • [36] Some Remarks on Local Fractional Integral Inequalities Involving Mittag-Leffler Kernel Using Generalized (E, h)-Convexity
    Saleh, Wedad
    Lakhdari, Abdelghani
    Almutairi, Ohud
    Kilicman, Adem
    MATHEMATICS, 2023, 11 (06)
  • [37] ON A MULTIVARIABLE CLASS OF MITTAG-LEFFLER TYPE FUNCTIONS
    Parmar, Rakesh Kumar
    Luo, Minjie
    Raina, Ravinder Krishna
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (04): : 981 - 999
  • [38] A Class of Extended Mittag-Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus
    Parmar, Rakesh K.
    MATHEMATICS, 2015, 3 (04): : 1069 - 1082
  • [39] SOME FAMILIES OF MITTAG-LEFFLER TYPE FUNCTIONS AND ASSOCIATED OPERATORS OF FRACTIONAL CALCULUS (SURVEY)
    Srivastava, H. M.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2016, 7 (02): : 123 - 145
  • [40] FINITE INTEGRAL FORMULA INVOLVING ALEPH-FUNCTION AND GENERALIZED MITTAG-LEFFLER FUNCTION
    Kumar, D.
    Ayant, F. Y.
    Singh, A.
    Banerji, P. K.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (01): : 96 - 109