On fractional derivatives with generalized Mittag-Leffler kernels

被引:69
|
作者
Abdeljawad, Thabet [1 ]
Baleanu, Dumitru [2 ,3 ]
机构
[1] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia
[2] Cankaya Univ, Dept Math, Ankara, Turkey
[3] Inst Space Sci, Magurele, Romania
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2018年
关键词
Fractional derivatives with generalized Mittag-Leffler kernels; Generalized Mittag-Leffler function; Laplace transform convolution; Euler-Lagrange equation; Integration by parts;
D O I
10.1186/s13662-018-1914-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractional derivatives with three parameter generalized Mittag-Leffler kernels and their properties are studied. The corresponding integral operators are obtained with the help of Laplace transforms. The action of the presented fractional integrals on the Caputo and Riemann type derivatives with three parameter Mittag-Leffler kernels is analyzed. Integration by parts formulas in the sense of Riemann and Caputo are proved and then used to formulate the fractional Euler-Lagrange equations with an illustrative example. Certain nonconstant functions whose fractional derivatives are zero are determined as well.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] ON CERTAIN FRACTIONAL CALCULUS OPERATORS INVOLVING GENERALIZED MITTAG-LEFFLER FUNCTION
    Kumar, Dinesh
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2016, 3 (02): : 33 - 45
  • [12] Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions
    Tomovski, Zivorad
    Hilfer, Rudolf
    Srivastava, H. M.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (11) : 797 - 814
  • [13] Multivariate analogue of generalized Mittag-Leffler function
    Saxena, R. K.
    Kalla, S. L.
    Saxena, Ravi
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (07) : 533 - 548
  • [14] Generalized Fractional Calculus Formulas for a Product of Mittag-Leffler Function and Multivariable Polynomials
    Suthar D.L.
    Habenom H.
    Tadesse H.
    International Journal of Applied and Computational Mathematics, 2018, 4 (1)
  • [15] Fractional calculus formulas for Mathieu-type series and generalized Mittag-Leffler function
    Khan, Owais
    Araci, Serkan
    Saif, Mohd
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 20 (02): : 122 - 130
  • [16] Some results on the generalized Mittag-Leffler function operator
    JC Prajapati
    RK Jana
    RK Saxena
    AK Shukla
    Journal of Inequalities and Applications, 2013
  • [17] Some results on the generalized Mittag-Leffler function operator
    Prajapati, J. C.
    Jana, R. K.
    Saxena, R. K.
    Shukla, A. K.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [18] Further results on the generalized Mittag-Leffler function operator
    Ram K Saxena
    Jignesh P Chauhan
    Ranjan K Jana
    Ajay K Shukla
    Journal of Inequalities and Applications, 2015
  • [19] Differential subordination associated with generalized Mittag-Leffler function
    Dorina Răducanu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 435 - 452
  • [20] Further results on the generalized Mittag-Leffler function operator
    Saxena, Ram K.
    Chauhan, Jignesh P.
    Jana, Ranjan K.
    Shukla, Ajay K.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12