Lipschitz-type conditions on homogeneous Banach spaces of analytic functions

被引:4
作者
Blasco, Oscar [1 ]
Stylogiannis, Georgios [2 ]
机构
[1] Univ Valencia, Dept Anal Matemat, E-46100 Valencia, Spain
[2] Univ Thessaloniki, Dept Math, Thessaloniki 54124, Greece
关键词
Banach spaces; Lipschitz-type conditions; Approximation by partial sums; OPERATORS;
D O I
10.1016/j.jmaa.2016.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we deal with Banach spaces of analytic functions X defined on the unit disk satisfying that R-t f is an element of X for any t > 0 and f is an element of X, where R-t f(z)= f(e(it) z). We study the space of functions in X such that parallel to P-r(Df)parallel to x = O(omega(1-r)/1-r), r -> 1(-) where Df(z) = Sigma(infinity)(n=0) (n + 1)a(n)z(n) and omega is a continuous and non-decreasing weight satisfying certain mild assumptions. The space under consideration is shown to coincide with the subspace of functions in X satisfying any of the following conditions: (a) parallel to R(t)f-f parallel to x = O(w(t)); (b) parallel to P(r)f-f parallel to x = O(omega(1-r)), (c) parallel to Delta(n)f parallel to X = O(omega)(2(-n))), (d) parallel to f - s(n)f parallel to x = O(omega(n(-1))), where P(r)f(z) = f(rz), s(n)f(z) = Sigma(n)(k=0) a(k)z(k) and Delta(n)f = s(2n) f - s(2n-1) f. Our results extend those known for Hardy or Bergman spaces and power weights omega(t) = t(alpha). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:612 / 630
页数:19
相关论文
共 15 条
[1]   Modulus of continuity with respect to semigroups of analytic functions and applications [J].
Blasco, O. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (01) :616-626
[2]   OPERATORS ON WEIGHTED BERGMAN SPACES (0 LESS-THAN P LESS-THAN-OR-EQUAL-TO 1) AND APPLICATIONS [J].
BLASCO, O .
DUKE MATHEMATICAL JOURNAL, 1992, 66 (03) :443-467
[3]  
Blasco O, 2011, REV MAT IBEROAM, V27, P415
[4]  
Bourdon P., 1989, London Math. Soc. Lecture Note Ser., V137, P81
[5]  
Dunford N., 1958, Linear Operators
[6]  
Duren P., 1970, THEORY SPACES
[7]   Mean Lipschitz conditions on Bergman space [J].
Galanoponlos, P. ;
Siskakis, A. G. ;
Stylogiannis, G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) :221-236
[8]  
GARNETT J. B., 1981, PURE APPL MATH, V96
[9]   Some properties of fractional integrals I [J].
Hardy, GH ;
Littlewood, JE .
MATHEMATISCHE ZEITSCHRIFT, 1928, 27 :565-606
[10]   Some properties of fractional integrals II [J].
Hardy, GH ;
Littlewood, JE .
MATHEMATISCHE ZEITSCHRIFT, 1932, 34 :403-439