Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales

被引:209
作者
Sorger, Volker J. [1 ]
Ye, Ziliang [1 ]
Oulton, Rupert F. [1 ]
Wang, Yuan [1 ]
Bartal, Guy [1 ]
Yin, Xiaobo [1 ]
Zhang, Xiang [1 ,2 ]
机构
[1] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
MACH-ZEHNDER MODULATOR; GUIDES; COMMUNICATION; PLASMONICS; PHOTON;
D O I
10.1038/ncomms1315
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Emerging communication applications call for a road map towards nanoscale photonic components and systems. Although metal-based nanostructures theoretically offer a solution to enable nanoscale photonics, the key demonstration of optical modes with deep sub-diffraction-limited confinement and significant propagation distances has not been experimentally achieved because of the trade-off between optical confinement and metallic losses. Here we report the first experimental demonstration of truly nanoscale guided waves in a metal-insulator-semiconductor device featuring low-loss and broadband operation. Near-field scanning optical microscopy reveals mode sizes down to 50x60 nm(2) at visible and nearinfrared wavelengths propagating more than 20 times the vacuum wavelength. Interference spectroscopy confirms that the optical mode hybridization between a surface plasmon and a dielectric mode concentrates the hybridized mode inside a nanometre thin gap. This nanoscale waveguide holds promise for next generation on-chip optical communication systems that integrate light sources, modulators or switches, nonlinear and quantum optics.
引用
收藏
页数:5
相关论文
共 30 条
[21]   Plasmon lasers at deep subwavelength scale [J].
Oulton, Rupert F. ;
Sorger, Volker J. ;
Zentgraf, Thomas ;
Ma, Ren-Min ;
Gladden, Christopher ;
Dai, Lun ;
Bartal, Guy ;
Zhang, Xiang .
NATURE, 2009, 461 (7264) :629-632
[22]   All-optical modulation by plasmonic excitation of CdSe quantum dots [J].
Pacifici, Domenico ;
Lezec, Henri J. ;
Atwater, Harry A. .
NATURE PHOTONICS, 2007, 1 (07) :402-406
[23]   Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding [J].
Pile, DFP ;
Ogawa, T ;
Gramotnev, DK ;
Okamoto, T ;
Haraguchi, M ;
Fukui, M ;
Matsuo, S .
APPLIED PHYSICS LETTERS, 2005, 87 (06)
[24]   Integration of photonic and silver nanowire plasmonic waveguides [J].
Pyayt, Anna L. ;
Wiley, Benjamin ;
Xia, Younan ;
Chen, Antao ;
Dalton, Larry .
NATURE NANOTECHNOLOGY, 2008, 3 (11) :660-665
[25]  
Shainline J., 2009, FWZ4 FRONTIERS OPTIC
[26]   Plasmonic Fabry-Perot Nanocavity [J].
Sorger, Volker J. ;
Oulton, Rupert F. ;
Yao, Jie ;
Bartal, Guy ;
Zhang, Xiang .
NANO LETTERS, 2009, 9 (10) :3489-3493
[27]   Quantum entanglement between an optical photon and a solid-state spin qubit [J].
Togan, E. ;
Chu, Y. ;
Trifonov, A. S. ;
Jiang, L. ;
Maze, J. ;
Childress, L. ;
Dutt, M. V. G. ;
Sorensen, A. S. ;
Hemmer, P. R. ;
Zibrov, A. S. ;
Lukin, M. D. .
NATURE, 2010, 466 (7307) :730-U4
[28]   Nanowire Plasmon Excitation by Adiabatic Mode Transformation [J].
Verhagen, Ewold ;
Spasenovic, Marko ;
Polman, Albert ;
Kuipers, L. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[29]   The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems [J].
Welch, David F. ;
Kish, Fred A. ;
Nagarajan, Radhakrishnan ;
Joyner, Charles H. ;
Schneider, Richard P., Jr. ;
Dominic, Vincent G. ;
Mitchell, Matthew L. ;
Grubb, Stephen G. ;
Chiang, Ting-Kuang ;
Perkins, Drew D. ;
Nilsson, Alan C. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (12) :4674-4683
[30]   Numerical analysis of deep sub-wavelength integrated plasmonic devices based on Semiconductor-Insulator-Metal strip waveguides [J].
Zhang, Xiao-Yang ;
Hu, A. ;
Wen, J. Z. ;
Zhang, Tong ;
Xue, Xiao-Jun ;
Zhou, Y. ;
Duley, W. W. .
OPTICS EXPRESS, 2010, 18 (18) :18945-18959