Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales

被引:207
作者
Sorger, Volker J. [1 ]
Ye, Ziliang [1 ]
Oulton, Rupert F. [1 ]
Wang, Yuan [1 ]
Bartal, Guy [1 ]
Yin, Xiaobo [1 ]
Zhang, Xiang [1 ,2 ]
机构
[1] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
来源
NATURE COMMUNICATIONS | 2011年 / 2卷
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
MACH-ZEHNDER MODULATOR; GUIDES; COMMUNICATION; PLASMONICS; PHOTON;
D O I
10.1038/ncomms1315
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Emerging communication applications call for a road map towards nanoscale photonic components and systems. Although metal-based nanostructures theoretically offer a solution to enable nanoscale photonics, the key demonstration of optical modes with deep sub-diffraction-limited confinement and significant propagation distances has not been experimentally achieved because of the trade-off between optical confinement and metallic losses. Here we report the first experimental demonstration of truly nanoscale guided waves in a metal-insulator-semiconductor device featuring low-loss and broadband operation. Near-field scanning optical microscopy reveals mode sizes down to 50x60 nm(2) at visible and nearinfrared wavelengths propagating more than 20 times the vacuum wavelength. Interference spectroscopy confirms that the optical mode hybridization between a surface plasmon and a dielectric mode concentrates the hybridized mode inside a nanometre thin gap. This nanoscale waveguide holds promise for next generation on-chip optical communication systems that integrate light sources, modulators or switches, nonlinear and quantum optics.
引用
收藏
页数:5
相关论文
共 30 条
  • [1] Biosensing with plasmonic nanosensors
    Anker, Jeffrey N.
    Hall, W. Paige
    Lyandres, Olga
    Shah, Nilam C.
    Zhao, Jing
    Van Duyne, Richard P.
    [J]. NATURE MATERIALS, 2008, 7 (06) : 442 - 453
  • [2] Channel plasmon-polariton guiding by subwavelength metal grooves
    Bozhevolnyi, SI
    Volkov, VS
    Devaux, E
    Ebbesen, TW
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (04)
  • [3] APPLIED PHYSICS The Case for Plasmonics
    Brongersma, Mark L.
    Shalaev, Vladimir M.
    [J]. SCIENCE, 2010, 328 (5977) : 440 - 441
  • [4] Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators
    Cai, Wenshan
    White, Justin S.
    Brongersma, Mark L.
    [J]. NANO LETTERS, 2009, 9 (12) : 4403 - 4411
  • [5] Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components
    Chu, Hong-Son
    Li, Er-Ping
    Bai, Ping
    Hegde, Ravi
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (22)
  • [6] Highly confined photon transport in subwavelength metallic slot waveguides
    Dionne, J. A.
    Lezec, H. J.
    Atwater, Harry A.
    [J]. NANO LETTERS, 2006, 6 (09) : 1928 - 1932
  • [7] PlasMOStor: A Metal-Oxide-Si Field Effect Plasmonic Modulator
    Dionne, Jennifer A.
    Diest, Kenneth
    Sweatlock, Luke A.
    Atwater, Harry A.
    [J]. NANO LETTERS, 2009, 9 (02) : 897 - 902
  • [8] Plasmonics beyond the diffraction limit
    Gramotnev, Dmitri K.
    Bozhevolnyi, Sergey I.
    [J]. NATURE PHOTONICS, 2010, 4 (02) : 83 - 91
  • [9] Ultra-compact, low RF power, 10 gb/s silicon Mach-Zehnder modulator
    Green, William M. J.
    Rooks, Michael J.
    Sekaric, Lidija
    Vlasov, Yurii A.
    [J]. OPTICS EXPRESS, 2007, 15 (25): : 17106 - 17113
  • [10] Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers
    Guha, Biswajeet
    Gondarenko, Alexander
    Lipson, Michal
    [J]. OPTICS EXPRESS, 2010, 18 (03): : 1879 - 1887