Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales

被引:209
作者
Sorger, Volker J. [1 ]
Ye, Ziliang [1 ]
Oulton, Rupert F. [1 ]
Wang, Yuan [1 ]
Bartal, Guy [1 ]
Yin, Xiaobo [1 ]
Zhang, Xiang [1 ,2 ]
机构
[1] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
MACH-ZEHNDER MODULATOR; GUIDES; COMMUNICATION; PLASMONICS; PHOTON;
D O I
10.1038/ncomms1315
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Emerging communication applications call for a road map towards nanoscale photonic components and systems. Although metal-based nanostructures theoretically offer a solution to enable nanoscale photonics, the key demonstration of optical modes with deep sub-diffraction-limited confinement and significant propagation distances has not been experimentally achieved because of the trade-off between optical confinement and metallic losses. Here we report the first experimental demonstration of truly nanoscale guided waves in a metal-insulator-semiconductor device featuring low-loss and broadband operation. Near-field scanning optical microscopy reveals mode sizes down to 50x60 nm(2) at visible and nearinfrared wavelengths propagating more than 20 times the vacuum wavelength. Interference spectroscopy confirms that the optical mode hybridization between a surface plasmon and a dielectric mode concentrates the hybridized mode inside a nanometre thin gap. This nanoscale waveguide holds promise for next generation on-chip optical communication systems that integrate light sources, modulators or switches, nonlinear and quantum optics.
引用
收藏
页数:5
相关论文
共 30 条
[1]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[2]   Channel plasmon-polariton guiding by subwavelength metal grooves [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Ebbesen, TW .
PHYSICAL REVIEW LETTERS, 2005, 95 (04)
[3]   APPLIED PHYSICS The Case for Plasmonics [J].
Brongersma, Mark L. ;
Shalaev, Vladimir M. .
SCIENCE, 2010, 328 (5977) :440-441
[4]   Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators [J].
Cai, Wenshan ;
White, Justin S. ;
Brongersma, Mark L. .
NANO LETTERS, 2009, 9 (12) :4403-4411
[5]   Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components [J].
Chu, Hong-Son ;
Li, Er-Ping ;
Bai, Ping ;
Hegde, Ravi .
APPLIED PHYSICS LETTERS, 2010, 96 (22)
[6]   Highly confined photon transport in subwavelength metallic slot waveguides [J].
Dionne, J. A. ;
Lezec, H. J. ;
Atwater, Harry A. .
NANO LETTERS, 2006, 6 (09) :1928-1932
[7]   PlasMOStor: A Metal-Oxide-Si Field Effect Plasmonic Modulator [J].
Dionne, Jennifer A. ;
Diest, Kenneth ;
Sweatlock, Luke A. ;
Atwater, Harry A. .
NANO LETTERS, 2009, 9 (02) :897-902
[8]   Plasmonics beyond the diffraction limit [J].
Gramotnev, Dmitri K. ;
Bozhevolnyi, Sergey I. .
NATURE PHOTONICS, 2010, 4 (02) :83-91
[9]   Ultra-compact, low RF power, 10 gb/s silicon Mach-Zehnder modulator [J].
Green, William M. J. ;
Rooks, Michael J. ;
Sekaric, Lidija ;
Vlasov, Yurii A. .
OPTICS EXPRESS, 2007, 15 (25) :17106-17113
[10]   Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers [J].
Guha, Biswajeet ;
Gondarenko, Alexander ;
Lipson, Michal .
OPTICS EXPRESS, 2010, 18 (03) :1879-1887