FAD transport and FAD-dependent protein thiol oxidation in rat liver microsomes

被引:24
|
作者
Varsányi, M
Szarka, A
Papp, E
Makai, D
Nardai, G
Fulceri, R
Csermely, P
Mandl, J
Benedetti, A
Bánhegyi, G
机构
[1] Semmelweis Univ, Dept Med Chem Mol Biol & Pathobiochem, H-1444 Budapest, Hungary
[2] Hungarian Acad Sci, Endoplasm Reticulum Res Grp, H-1444 Budapest, Hungary
[3] Budapest Univ Technol & Econ, Dept Biochem & Food Technol, Budapest, Hungary
[4] Univ Siena, Dept Pathophysiol Expt Med & Publ Hlth, I-53100 Siena, Italy
关键词
D O I
10.1074/jbc.M307783200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The transport of FAD and its effect on disulfide bond formation was investigated in rat liver microsomal vesicles. By measuring the intravesicular FAD-accessible space, we observed that FAD permeates across the microsomal membrane and accumulates in the lumen. Rapid filtration experiments also demonstrated the uptake and efflux of the compound, which could be inhibited by atractyloside and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. FAD entering the lumen promoted the oxidation of protein thiols and increased the intraluminal oxidation of glucose-6-phosphate. These findings support the notion that, similar to yeast, free FAD may have a decisive role in the mechanism of oxidative protein folding in the endoplasmic reticulum lumen of mammalian cells.
引用
收藏
页码:3370 / 3374
页数:5
相关论文
共 50 条
  • [1] ON MECHANISMS OF PHOTOCHEMICAL REDUCTIONS OF FAD AND FAD-DEPENDENT FLAVOPROTEINS
    MCCORMICK, DB
    KOSTER, JF
    VEEGER, C
    EUROPEAN JOURNAL OF BIOCHEMISTRY, 1967, 2 (04): : 387 - +
  • [2] INVOLVEMENT OF FAD-DEPENDENT POLYAMINE OXIDASE IN THE METABOLISM OF MILACEMIDE IN THE RAT
    BENEDETTI, MS
    ALLIEVI, C
    COCCHIARA, G
    PEVARELLO, P
    DOSTERT, P
    XENOBIOTICA, 1992, 22 (02) : 191 - 197
  • [3] RIBOFLAVIN 5'-PYROPHOSPHATE - A CONTAMINANT OF COMMERCIAL FAD, A COENZYME FOR FAD-DEPENDENT OXIDASES, AND AN INHIBITOR OF FAD SYNTHETASE
    HARTMAN, HA
    EDMONDSON, DE
    MCCORMICK, DB
    ANALYTICAL BIOCHEMISTRY, 1992, 202 (02) : 348 - 355
  • [4] Crystallographic analysis of FAD-dependent glucose dehydrogenase
    Komori, Hirofumi
    Inaka, Koji
    Furubayashi, Naoki
    Honda, Michinari
    Higuchi, Yoshiki
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2015, 71 : 1017 - 1019
  • [5] Redox potential of FAD-dependent glucose dehydrogenase
    Schachinger, Franziska
    Ma, Su
    Ludwig, Roland
    ELECTROCHEMISTRY COMMUNICATIONS, 2023, 146
  • [6] The crystal structure of augmenter of liver regeneration: A mammalian FAD-dependent sulfhydryl oxidase
    Wu, CK
    Dailey, TA
    Dailey, HA
    Wang, BC
    Rose, JP
    PROTEIN SCIENCE, 2003, 12 (05) : 1109 - 1118
  • [7] Bionanotechnology approach for FAD-dependent enzymes with nanomaterials sensor
    Li, Ying
    Chen, Shen-Ming
    Yang, Cheng-Yu
    Ali, M. Ajmal
    AlHemaid, Fahad M. A.
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2012, 19 (04) : 465 - 471
  • [8] Lysosomal prenylcysteine lyase is a FAD-dependent thioether oxidase
    Tschantz, WR
    Digits, JA
    Pyun, HJ
    Coates, RM
    Casey, PJ
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (04) : 2321 - 2324
  • [9] Development of FAD-Dependent Glucose Dehydrogenase for CGM Sensor
    Masakari, Yosuke
    Araki, Yasuko
    Sakaue, Ryoichi
    DIABETES, 2017, 66 : LB26 - LB26
  • [10] HUMAN FAD-DEPENDENT NAD(P)H DIAPHORASE
    EDWARDS, YH
    POTTER, J
    HOPKINSON, DA
    BIOCHEMICAL JOURNAL, 1980, 187 (02) : 429 - 436