Coarse-grained chemical reaction model

被引:21
|
作者
Yingling, YG [1 ]
Garrison, BJ [1 ]
机构
[1] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2004年 / 108卷 / 06期
关键词
D O I
10.1021/jp035730i
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have developed a methodology for including effects of chemical reactions in coarse-grained computer simulations such as those that use the united atom approximation. The new coarse-grained chemical reaction model (CGCRM) adopts the philosophy of kinetic Monte Carlo approaches and includes a probabilistic element to predicting when reactions occur, thus obviating the need for a chemically correct interaction potential. The CGCRM uses known chemical reactions along with their probabilities and exothermicities for a specific material in order to assess the effect of chemical reactions on a physical process of interest. The reaction event in the simulation is implemented by removing the reactant molecules from the simulation and replacing them with product molecules. The position of the product molecules is carefully adjusted to make sure that the total energy change of the system corresponds to the reaction exothermicity. The CGCR model has been applied to simulations of laser irradiation of chlorobenzene at fluences such that there is ablation or massive removal of material. Two simulations, one for photothermal ablation and one for photochemical ablation, are compared to each other and to experimental data. In the photothermal simulation, all the laser energy goes into heat. In the photochemical simulation, the photon cleaves the C-Cl bond creating two radicals that can undergo subsequent abstraction and radical-radical recombination reactions.
引用
收藏
页码:1815 / 1821
页数:7
相关论文
共 50 条
  • [1] A polarizable coarse-grained water model for coarse-grained proteins simulations
    Ha-Duong, Tap
    Basdevant, Nathalie
    Borgis, Daniel
    CHEMICAL PHYSICS LETTERS, 2009, 468 (1-3) : 79 - 82
  • [2] Coarse-grained model of glycosaminoglycans
    Samsonov, S. A.
    Bichmann, L.
    Pisabarro, M. T.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 : S172 - S172
  • [3] Coarse-Grained Model of Glycosaminoglycans
    Samsonoy, Sergey A.
    Bichmann, Leon
    Pisabarro, M. Teresa
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (01) : 114 - 124
  • [4] Coarse-grained model for polyelectrolyte complexation
    Andreev, Marat
    Srivastava, Samanvaya
    Li, Lu
    Tirrell, Matthew
    Douglas, Jack
    De Pablo, Juan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [5] The “sugar” coarse-grained DNA model
    N. A. Kovaleva
    I. P. Koroleva (Kikot)
    M. A. Mazo
    E. A. Zubova
    Journal of Molecular Modeling, 2017, 23
  • [6] The "sugar" coarse-grained DNA model
    Kovaleva, N. A.
    Koroleva , I. P.
    Mazo, M. A.
    Zubova, E. A.
    JOURNAL OF MOLECULAR MODELING, 2017, 23 (02)
  • [7] A Coarse-Grained Model for Unfolded Proteins
    Ghavami, Ali
    Van der Giessen, Erik
    Onck, Patrick
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 59 - 59
  • [8] A coarse-grained model for DNA origami
    Reshetnikov, Roman V.
    Stolyarova, Anastasia V.
    Zalevsky, Arthur O.
    Panteleev, Dmitry Y.
    Pavlova, Galina V.
    Klinov, Dmitry V.
    Golovin, Andrey V.
    Protopopova, Anna D.
    NUCLEIC ACIDS RESEARCH, 2018, 46 (03) : 1102 - 1112
  • [9] Electronically Coarse-Grained Model for Water
    Jones, A.
    Cipcigan, F.
    Sokhan, V. P.
    Crain, J.
    Martyna, G. J.
    PHYSICAL REVIEW LETTERS, 2013, 110 (22)
  • [10] Coarse-grained model for a molecular crystal
    Gee, Richard H.
    Wu, Christine
    Maiti, Amitesh
    APPLIED PHYSICS LETTERS, 2006, 89 (02)