Constructible sheaves on simplicial complexes and Koszul duality

被引:0
|
作者
Vybornov, M [1 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a linear algebra data presentation of the category SHc(X, delta) of sheaves constant along the perverse simplices on a finite simplicial complex X. We also establish Koszul duality between SHc(X, delta) and the category M-c(X, delta) of perverse sheaves constructible with respect to the triangulation.
引用
收藏
页码:675 / 683
页数:9
相关论文
共 50 条
  • [1] Etale duality for constructible sheaves on arithmetic schemes
    Jannsen, Uwe
    Saito, Shuji
    Sato, Kanetomo
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 688 : 1 - 65
  • [2] Linear Koszul duality, II: coherent sheaves on perfect sheaves
    Mirkovic, I.
    Riche, S.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 93 : 1 - 24
  • [3] Equivariant-constructible Koszul duality for dual toric varieties
    Braden, T
    Lunts, VA
    ADVANCES IN MATHEMATICS, 2006, 201 (02) : 408 - 453
  • [4] DUALITY FOR Z-CONSTRUCTIBLE SHEAVES ON CURVES OVER FINITE FIELDS
    Geisser, Thomas
    DOCUMENTA MATHEMATICA, 2012, 17 : 989 - 1002
  • [5] MODULAR PERVERSE SHEAVES ON FLAG VARIETIES, II: KOSZUL DUALITY AND FORMALITY
    Achar, Pramod N.
    Riche, Simon
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (01) : 161 - 215
  • [6] Constructible sheaves are holonomic
    A. Beilinson
    Selecta Mathematica, 2016, 22 : 1797 - 1819
  • [7] Constructible sheaves are holonomic
    Beilinson, A.
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (04): : 1797 - 1819
  • [8] Constructible sheaves on schemes
    Hemo, Tamir
    Richarz, Timo
    Scholbach, Jakob
    ADVANCES IN MATHEMATICS, 2023, 429
  • [9] Higher resonance schemes and Koszul modules of simplicial complexes
    Aprodu, Marian
    Farkas, Gavril
    Raicu, Claudiu
    Sammartano, Alessio
    Suciu, Alexander I.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (04) : 787 - 805
  • [10] Derived Category of Equivariant Coherent Sheaves on a Smooth Toric Variety and Koszul Duality
    Valery Lunts
    Functional Analysis and Its Applications, 2025, 59 (1) : 38 - 64