Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening

被引:1474
作者
Bastus, Neus G. [1 ]
Comenge, Joan [1 ,2 ,3 ]
Puntes, Victor [1 ,3 ,4 ]
机构
[1] ICN, Barcelona 08193, Spain
[2] Int Iberian Nanotechnol Lab INL, P-4710229 Braga, Portugal
[3] Univ Autonoma Barcelona, E-08193 Barcelona, Spain
[4] ICREA, Barcelona 08010, Spain
关键词
SILVER;
D O I
10.1021/la201938u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Monodisperse citrate-stabilized gold nanoparticles with a uniform quasi-spherical shape of up to similar to 200 rim and a narrow size distribution were synthesized following a kinetically controlled seeded growth strategy via the reduction of HAuCl4 by sodium citrate. The inhibition of any secondary nucleation during homogeneous growth was controlled by adjusting the reaction conditions: temperature, gold precursor to seed particle concentration, and pH. This method presents improved results regarding the traditional Frens method in several aspects: (i) it produces particles of higher monodispersity; (ii) it allows better control of the gold nanoparticle size and size distribution; and (iii) it leads to higher concentrations. Gold nanoparticles synthesized following this method can be further functionalized with a wide variety of molecules, hence this method appears to be a promising candidate for application in the fields of biomedicine, photonics, and electronics, among others.
引用
收藏
页码:11098 / 11105
页数:8
相关论文
共 34 条
[1]   SERS-Based Diagnosis and Biodetection [J].
Alvarez-Puebla, Ramon A. ;
Liz-Marzan, Luis M. .
SMALL, 2010, 6 (05) :604-610
[2]   Homogeneous Conjugation of Peptides onto Gold Nanoparticles Enhances Macrophage Response [J].
Bastus, Neus G. ;
Sanchez-Tillo, Ester ;
Pujals, Silvia ;
Farrera, Consol ;
Lopez, Carmen ;
Giralt, Ernest ;
Celada, Antonio ;
Lloberas, Jorge ;
Puntes, Victor .
ACS NANO, 2009, 3 (06) :1335-1344
[3]   Monodisperse Platinum Nanospheres with Adjustable Diameters from 10 to 100 nm: Synthesis and Distinct Optical Properties [J].
Bigall, Nadja C. ;
Haertling, Thomas ;
Klose, Markus ;
Simon, Paul ;
Eng, Lukas M. ;
Eychmueller, Alexander .
NANO LETTERS, 2008, 8 (12) :4588-4592
[4]   Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces [J].
Brown, KR ;
Natan, MJ .
LANGMUIR, 1998, 14 (04) :726-728
[5]   Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape [J].
Brown, KR ;
Walter, DG ;
Natan, MJ .
CHEMISTRY OF MATERIALS, 2000, 12 (02) :306-313
[6]   Hydroxylamine seeding of colloidal au nanoparticles. 3. Controlled formation of conductive Au films [J].
Brown, KR ;
Lyon, LA ;
Fox, AP ;
Reiss, BD ;
Natan, MJ .
CHEMISTRY OF MATERIALS, 2000, 12 (02) :314-323
[7]   Distribution and potential toxicity of engineered inorganic nanoparticles and carbon nanostructures in biological systems [J].
Casals, Eudald ;
Vazquez-Campos, Socorro ;
Bastus, Neus G. ;
Puntes, Victor .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2008, 27 (08) :672-683
[8]   Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells [J].
Chithrani, BD ;
Ghazani, AA ;
Chan, WCW .
NANO LETTERS, 2006, 6 (04) :662-668
[9]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346
[10]   CONTROLLED NUCLEATION FOR REGULATION OF PARTICLE-SIZE IN MONODISPERSE GOLD SUSPENSIONS [J].
FRENS, G .
NATURE-PHYSICAL SCIENCE, 1973, 241 (105) :20-22