FSDR: Frequency Space Domain Randomization for Domain Generalization

被引:177
作者
Huang, Jiaxing [1 ]
Guan, Dayan [1 ]
Xiao, Aoran [1 ]
Lu, Shijian [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci Engn, Singapore, Singapore
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
关键词
D O I
10.1109/CVPR46437.2021.00682
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain generalization aims to learn a generalizable model from a 'known' source domain for various 'unknown' target domains. It has been studied widely by domain randomization that transfers source images to different styles in spatial space for learning domain-agnostic features. However, most existing randomization methods use GANs that often lack of controls and even alter semantic structures of images undesirably. Inspired by the idea of JPEG that converts spatial images into multiple frequency components (FCs), we propose Frequency Space Domain Randomization (FSDR) that randomizes images in frequency space by keeping domain-invariant FCs (DIFs) and randomizing domain-variant FCs (DVFs) only. FSDR has two unique features: 1) it decomposes images into DIFs and DVFs which allows explicit access and manipulation of them and more controllable randomization; 2) it has minimal effects on semantic structures of images and domain-invariant features. We examined domain variance and invariance property of FCs statistically and designed a network that can identify and fuse DIFs and DVFs dynamically through iterative learning. Extensive experiments over multiple domain generalizable segmentation tasks show that FSDR achieves superior segmentation and its performance is even on par with domain adaptation methods that access target data in training.
引用
收藏
页码:6887 / 6898
页数:12
相关论文
共 87 条
[1]  
[Anonymous], 2018, REPORTS BASEL, DOI DOI 10.3390/REPORTS1010006
[2]  
[Anonymous], 2018, ARXIV180310861
[3]  
[Anonymous], 2015, P INT C LEARNING REP
[4]  
Bengio Y., 2005, Advances in Neural Information Processing Systems (NeurIPS)
[5]   Pedestrian detection with unsupervised multispectral feature learning using deep neural networks [J].
Cao, Yanpeng ;
Guan, Dayan ;
Huang, Weilin ;
Yang, Jiangxin ;
Cao, Yanlong ;
Qiao, Yu .
INFORMATION FUSION, 2019, 46 :206-217
[6]   Domain Generalization by Solving Jigsaw Puzzles [J].
Carlucci, Fabio M. ;
D'Innocente, Antonio ;
Bucci, Silvia ;
Caputo, Barbara ;
Tommasi, Tatiana .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2224-2233
[7]   The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter [J].
Castelli, V ;
Cover, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (06) :2102-2117
[8]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[9]   Re-weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation [J].
Chen, Qingchao ;
Liu, Yang ;
Wang, Zhaowen ;
Wassell, Ian ;
Chetty, Kevin .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :7976-7985
[10]   ROAD: Reality Oriented Adaptation for Semantic Segmentation of Urban Scenes [J].
Chen, Yuhua ;
Li, Wen ;
Van Gool, Luc .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :7892-7901