Acquisition and voxelwise analysis of multi-subject diffusion data with Tract-Based Spatial Statistics

被引:498
作者
Smith, Stephen M. [1 ]
Johansen-Berg, Heidi [1 ]
Jenkinson, Mark [1 ]
Rueckert, Daniel [2 ]
Nichols, Thomas E. [1 ,3 ]
Miller, Karla L. [1 ]
Robson, Matthew D. [4 ]
Jones, Derek K. [5 ]
Klein, Johannes C. [1 ]
Bartsch, Andreas J. [6 ]
Behrens, Timothy E. J. [1 ]
机构
[1] Univ Oxford, Ctr Funct Magnet Resonance Imaging Brain, Oxford, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London, England
[3] GlaxoSmithKline Inc, Clin Imaging Ctr, London, England
[4] Oxford Ctr Clin Magnet Resonance Res, Dept Cardiovasc Med, Oxford, England
[5] Cardiff Univ, Brain & Repair Imaging Ctr, Cardiff, Wales
[6] Univ Wurzburg, Dept Neuroradiol, Wurzburg, Germany
基金
英国惠康基金; 英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
D O I
10.1038/nprot.2007.45
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
There is much interest in using magnetic resonance diffusion imaging to provide information on anatomical connectivity in the brain by measuring the diffusion of water in white matter tracts. Among the measures, the most commonly derived from diffusion data is fractional anisotropy (FA), which quantifies local tract directionality and integrity. Many multi-subject imaging studies are using FA images to localize brain changes related to development, degeneration and disease. In a recent paper, we presented a new approach, tract-based spatial statistics (TBSS), which aims to solve crucial issues of cross-subject data alignment, allowing localized cross-subject statistical analysis. This works by transforming the data from the centers of the tracts that are consistent across a study's subjects into a common space. In this protocol, we describe the MRI data acquisition and analysis protocols required for TBSS studies of localized change in brain connectivity across multiple subjects.
引用
收藏
页码:499 / 503
页数:5
相关论文
共 31 条
[1]   Optimal imaging parameters for fiber-orientation estimation in diffusion MRI [J].
Alexander, DC ;
Barker, GJ .
NEUROIMAGE, 2005, 27 (02) :357-367
[2]   How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging [J].
Andersson, JLR ;
Skare, S ;
Ashburner, J .
NEUROIMAGE, 2003, 20 (02) :870-888
[3]   Voxel-based morphometry - The methods [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2000, 11 (06) :805-821
[4]   Diffusion tensor imaging using single-shot SENSE-EPI [J].
Bammer, R ;
Auer, M ;
Keeling, SL ;
Augustin, M ;
Stables, LA ;
Prokesch, RW ;
Stollberger, R ;
Moseley, ME ;
Fazekas, F .
MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (01) :128-136
[5]   The basis of anisotropic water diffusion in the nervous system - a technical review [J].
Beaulieu, C .
NMR IN BIOMEDICINE, 2002, 15 (7-8) :435-455
[6]   Characterization and propagation of uncertainty in diffusion-weighted MR imaging [J].
Behrens, TEJ ;
Woolrich, MW ;
Jenkinson, M ;
Johansen-Berg, H ;
Nunes, RG ;
Clare, S ;
Matthews, PM ;
Brady, JM ;
Smith, SM .
MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (05) :1077-1088
[7]  
BUXTON R, 2002, INTRO FUNCTIONAL ANA, P185
[8]   THE RICIAN DISTRIBUTION OF NOISY MRI DATA [J].
GUDBJARTSSON, H ;
PATZ, S .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (06) :910-914
[9]   Between session reproducibility and between subject variability of diffusion MR and tractography measures [J].
Heiervang, E. ;
Behrens, T. E. J. ;
Mackay, C. E. ;
Robson, M. D. ;
Johansen-Berg, H. .
NEUROIMAGE, 2006, 33 (03) :867-877
[10]   Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases - a review [J].
Horsfield, MA ;
Jones, DK .
NMR IN BIOMEDICINE, 2002, 15 (7-8) :570-577