Synthesis of fused indolines by interrupted Fischer indolization in a microfluidic reactor

被引:2
作者
Duong, Alexander Tuan-Huy [1 ]
Simmons, Bryan J. [2 ]
Alam, Mohammad Parvez [1 ,3 ]
Campagna, Jesus [1 ]
Garg, Neil K. [2 ]
John, Varghese [1 ]
机构
[1] Univ Calif Los Angeles, Drug Discovery Lab, Dept Neurol, Mary S Easton Ctr Alzheimers Dis Res, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] Harvard Med Sch, Dept Genet, Boston, MA USA
基金
美国国家科学基金会;
关键词
Flow chemistry; Interrupted Fischer indolization; Microfluidic reactor; (Aza)indoline; Latent aldehyde; FLOW CHEMISTRY; GREENER;
D O I
10.1016/j.tetlet.2018.12.045
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
This study describes our development of a microfluidic reaction scheme for the synthesis of fused indoline ring systems found in several bioactive compounds. We have utilized a continuous-flow microfluidic reactor for the reaction of hydrazines with latent aldehydes through the interrupted Fischer indolization reaction to form fused indoline and azaindoline products. We have identified optimal conditions and evaluated the scope of this microfluidic reaction using various hydrazine and latent aldehyde surrogates. This green chemistry approach can be of general utility to rapidly produce indoline scaffolds and intermediates in a continuous manner. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:322 / 326
页数:5
相关论文
共 26 条
[1]   C-O bond formation in a microfluidic reactor: high yield SNAr substitution of heteroaryl chlorides [J].
Alam, Mohammad Parvez ;
Jagodzinska, Barbara ;
Campagna, Jesus ;
Spilman, Patricia ;
John, Varghese .
TETRAHEDRON LETTERS, 2016, 57 (19) :2059-2062
[2]   The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry [J].
Baumann, Marcus ;
Baxendale, Ian R. .
BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 2015, 11 :1194-1219
[3]   An Interrupted Fischer Indolization Approach toward Fused Indoline-Containing Natural Products [J].
Boal, Ben W. ;
Schammel, Alex W. ;
Garg, Neil K. .
ORGANIC LETTERS, 2009, 11 (15) :3458-3461
[4]   Flow Chemistry: Intelligent Processing of Gas-Liquid Transformations Using a Tube-in-Tube Reactor [J].
Brzozowski, Martin ;
O'Brien, Matthew ;
Ley, Steven V. ;
Polyzos, Anastasios .
ACCOUNTS OF CHEMICAL RESEARCH, 2015, 48 (02) :349-362
[5]  
Darvas F., 2014, Flow Chemistry, V1st
[6]   Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis [J].
Fanelli, Flavio ;
Parisi, Giovanna ;
Degennaro, Leonardo ;
Luisi, Renzo .
BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 2017, 13 :520-542
[7]  
Fischer E., BER DTSCH CHEM GES, V16, P2241, DOI [DOI 10.1002/CBER.188301602141, 10.1002/cber.188301602141]
[8]  
Fischer E., 1884, Berichte der Dtsch. Chem. Gesellschaft, V17, P559, DOI DOI 10.1002/CBER.188401701155
[9]   Continuous Flow Organic Chemistry: Successes and Pitfalls at the Interface with Current Societal Challenges [J].
Gerardy, Romaric ;
Emmanuel, Noemie ;
Toupy, Thomas ;
Kassin, Victor-Emmanuel ;
Tshibalonza, Nelly Ntumba ;
Schmitz, Michael ;
Monbaliu, Jean-Christophe M. .
EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2018, 2018 (20-21) :2301-2351
[10]   Continuous-Flow TechnologyA Tool for the Safe Manufacturing of Active Pharmaceutical Ingredients [J].
Gutmann, Bernhard ;
Cantillo, David ;
Kappe, C. Oliver .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (23) :6688-6728