On convex optimization without convex representation

被引:14
作者
Lasserre, Jean B. [1 ,2 ]
机构
[1] Univ Toulouse, LAAS, LAAS CNRS, F-31077 Toulouse 4, France
[2] Univ Toulouse, LAAS, Inst Math, F-31077 Toulouse 4, France
关键词
Convex optimization; Convex programming; Log-barrier; UNCONSTRAINED MINIMIZATION TECHNIQUE;
D O I
10.1007/s11590-011-0323-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the convex optimization problem P : min(x){f (x) : x is an element of K} where f is convex continuously differentiable, and K subset of R(n) is a compact convex set with representation {x is an element of R(n) : g(j) (x) >= 0, j = 1,..., m} for some continuously differentiable functions (g(j)). We discuss the case where the g(j)'s are not all concave (in contrast with convex programming where they all are). In particular, even if the g(j) are not concave, we consider the log- barrier function phi(mu) with parameter mu, associated with P, usually defined for concave functions (g(j)). We then showthat any limit point of any sequence (x(mu)) subset of K of stationary points of phi(mu), mu -> 0, is a Karush- Kuhn- Tucker point of problem P and a global minimizer of f on K.
引用
收藏
页码:549 / 556
页数:8
相关论文
共 15 条
[1]  
[Anonymous], 1994, CONVEX BODIES BRUNN
[2]  
[Anonymous], 2002, Convexity and optimization in Rn
[3]  
Ben-Tal A., 2001, Lectures on modern convex optimization, DOI 10.1137/1.9780898718829.ch6
[4]  
Bertsekas D., 2003, Convex Analysis and Optimization
[5]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[6]   A geometrical insight on pseudoconvexity and pseudomonotonicity [J].
Crouzeix, Jean-Pierre ;
Eberhard, Andrew ;
Ralph, Daniel .
MATHEMATICAL PROGRAMMING, 2010, 123 (01) :61-83
[7]  
den Hertog D., 1994, Interior Point Approach to Linear, Quadratic and Convex Programming
[8]   COMPUTATIONAL ALGORITHM FOR THE SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE FOR NONLINEAR-PROGRAMMING [J].
FIACCO, AV ;
MCCORMICK, GP .
MANAGEMENT SCIENCE, 1964, 10 (04) :601-617
[9]   THE SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE FOR NONLINEAR-PROGRAMMING, A PRIMAL-DUAL METHOD [J].
FIACCO, AV ;
MCCORMICK, GP .
MANAGEMENT SCIENCE, 1964, 10 (02) :360-366
[10]   Characterization of the barrier parameter of homogeneous convex cones [J].
Guler, O ;
Tuncel, L .
MATHEMATICAL PROGRAMMING, 1998, 81 (01) :55-76