Regularity and monotonicity for solutions to a continuum model of epitaxial growth with nonlocal elastic effects

被引:0
作者
Gao, Yuan [3 ]
Lu, Xin Yang [1 ,2 ]
Wang, Chong [4 ]
机构
[1] Lakehead Univ, Dept Math Sci, Thunder Bay, ON P7B 5E1, Canada
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 0B9, Canada
[3] Duke Univ, Dept Math, Durham, NC 27708 USA
[4] Trinity Univ, Dept Math, San Antonio, TX 78212 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Fourth order degenerate parabolic equation; global strong solution; regularity; monotonicity; ANALYTICAL VALIDATION; CRYSTAL-SURFACE; TIME;
D O I
10.1515/acv-2020-0114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following parabolic nonlocal 4-th order degenerate equation: u(t) = [2 pi H(u(x)) + ln(u(xx )+ a) + 3/2(u(xx) + a)2](xx), arising from the epitaxial growth on crystalline materials. Here H denotes the Hilbert transform, and a > 0 is a given parameter. By relying on the theory of gradient flows, we first prove the global existence of a variational inequality solution with a general initial datum. Furthermore, to obtain a global strong solution, the main difficulty is the singularity of the logarithmic term when u(xx) + a approaches zero. Thus we show that, if the initial datum u(0) is such that (u(0))(xx) + a is uniformly bounded away from zero, then such property is preserved for all positive times. Finally, we will prove several higher regularity results for this global strong solution. These finer properties provide a rigorous justification for the global-in-time monotone solution to the epitaxial growth model with nonlocal elastic effects on vicinal surface.
引用
收藏
页码:183 / 199
页数:17
相关论文
共 24 条
[1]  
Ambrosio L, 2008, LECT MATH, P1
[2]  
Barbu V, 2010, SPRINGER MONOGR MATH, P27, DOI 10.1007/978-1-4419-5542-5_2
[3]   THE GROWTH OF CRYSTALS AND THE EQUILIBRIUM STRUCTURE OF THEIR SURFACES [J].
BURTON, WK ;
CABRERA, N ;
FRANK, FC .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 243 (866) :299-358
[4]  
Butzer P., 1971, Fourier Analysis and Approximation
[5]   Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J].
Chang, Cui-Zu ;
Zhang, Jinsong ;
Feng, Xiao ;
Shen, Jie ;
Zhang, Zuocheng ;
Guo, Minghua ;
Li, Kang ;
Ou, Yunbo ;
Wei, Pang ;
Wang, Li-Li ;
Ji, Zhong-Qing ;
Feng, Yang ;
Ji, Shuaihua ;
Chen, Xi ;
Jia, Jinfeng ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng ;
He, Ke ;
Wang, Yayu ;
Lu, Li ;
Ma, Xu-Cun ;
Xue, Qi-Kun .
SCIENCE, 2013, 340 (6129) :167-170
[6]   Analytical Validation of a Continuum Model for Epitaxial Growth with Elasticity on Vicinal Surfaces [J].
Dal Maso, G. ;
Fonseca, I. ;
Leoni, G. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 212 (03) :1037-1064
[7]   GROWTH INSTABILITIES INDUCED BY ELASTICITY IN A VICINAL SURFACE [J].
DUPORT, C ;
POLITI, P ;
VILLAIN, J .
JOURNAL DE PHYSIQUE I, 1995, 5 (10) :1317-1350
[8]   Regularity in Time for Weak Solutions of a Continuum Model for Epitaxial Growth with Elasticity on Vicinal Surfaces [J].
Fonseca, Irene ;
Leoni, Giovanni ;
Lu, Xin Yang .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 40 (10) :1942-1957
[9]   Gradient flow approach to an exponential thin film equation: global existence and latent singularity [J].
Gao, Yuan ;
Liu, Jian-Guo ;
Lu, Xin Yang .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25
[10]   Global strong solution with BV derivatives to singular solid-on-solid model with exponential nonlinearity [J].
Gao, Yuan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (07) :4429-4447