On Some Zarankiewicz Numbers and Bipartite Ramsey Numbers for Quadrilateral

被引:0
作者
Dybizbanski, Janusz [1 ]
Dzido, Tomasz [1 ]
Radziszowski, Stanislaw [2 ,3 ,4 ]
机构
[1] Univ Gdansk, Inst Informat, PL-80952 Gdansk, Poland
[2] Gdansk Univ Technol, Dept Algorithms & Syst Modeling, PL-80233 Gdansk, Poland
[3] Rochester Inst Technol, Dept Comp Sci, Rochester, NY 14623 USA
[4] Gdansk Univ Technol, PL-80233 Gdansk, Poland
关键词
Zarankiewicz number; Ramsey number; projective plane; LOWER BOUNDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Zarankiewicz number z(m, n; s, t) is the maximum number of edges in a subgraph of K-m,K-n that does not contain K-s,K-t as a subgraph. The bipartite Ramsey number b(ni, ... , n(k)) is the least positive integer b such that any coloring of the edges of K-b,K-b with k colors will result in a monochromatic copy of K-n,K-ni in the i-th color, for some i, 1 <= i <= k. If n(i) = m for all i, then we denote this number by b(k)(m). In this paper we obtain the exact values of some Zarankiewicz numbers for quadrilateral (s = t = 2), and we derive new bounds for diagonal multicolor bipartite Ramsey numbers avoiding quadrilateral. In particular, we prove that b(4)(2) = 19, and establish new general lower and upper bounds on b(k) (2).
引用
收藏
页码:275 / 287
页数:13
相关论文
共 15 条
  • [1] BEINEKE LW, 1976, P 5 BRIT COMB C 1975, V15, P17
  • [2] BOLLOBAS B, 1995, HDB COMBINATORICS, V2, P1231
  • [3] Damsdi G., 2013, Ann. Univ. Sci. Budap. Rolando Etvs Sect. Math, V56, P3
  • [4] A BIPARTITE RAMSEY NUMBER
    EXOO, G
    [J]. GRAPHS AND COMBINATORICS, 1991, 7 (04) : 395 - 396
  • [5] Fenner Stephen, RECTANGLE FREE COLOR
  • [6] Bipartite Ramsey numbers and Zarankiewicz numbers
    Goddard, W
    Henning, MA
    Oellermann, OR
    [J]. DISCRETE MATHEMATICS, 2000, 219 (1-3) : 85 - 95
  • [7] Hattingh JH, 1998, UTILITAS MATHEMATICA, V53, P217
  • [8] Irving R., 1978, Glasgow Math., V19, P13
  • [9] Kovari T., 1954, Colloq. Math., V3, P50
  • [10] New lower bounds on the multicolor Ramsey numbers rk(C4)
    Lazebnik, F
    Woldar, AJ
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 79 (02) : 172 - 176