FINITE p-GROUPS WHOSE NON-CENTRAL CYCLIC SUBGROUPS HAVE CYCLIC QUOTIENT GROUPS IN THEIR CENTRALIZERS

被引:1
作者
Zhang, Lihua [1 ]
Wang, Jiao [2 ]
Qu, Haipeng [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing 100876, Peoples R China
[2] Shanxi Normal Univ, Dept Math, Linfen 041004, Shanxi, Peoples R China
关键词
centralizers; non-central elements; normal rank; p-groups of maximal class; ELEMENTS;
D O I
10.4134/BKMS.2015.52.2.367
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we classified finite p-groups G such that C-G (x)/< x > is cyclic for all non-central elements x is an element of G. This solved a problem proposed By Y. Berkovoch.
引用
收藏
页码:367 / 376
页数:10
相关论文
共 7 条
  • [1] [Anonymous], 1967, ENDLICHE GRUPPEN
  • [2] Berkovich Y, 2008, DEGRUYTER EXPOS MATH, V46, P1, DOI 10.1515/9783110208221
  • [3] Berkovich Y, 2006, CONTEMP MATH, V402, P13
  • [4] Blackburn N., 1961, Proc. Lond. Math. Soc., V11, P1
  • [5] Finite p-groups up to isoclinism, which have only two conjugacy lengths
    Ishikawa, K
    [J]. JOURNAL OF ALGEBRA, 1999, 220 (01) : 333 - 345
  • [6] FINITE p-GROUPS AND CENTRALIZERS OF NONCENTRAL ELEMENTS
    Li, Xianhua
    Zhang, Junqiang
    [J]. COMMUNICATIONS IN ALGEBRA, 2013, 41 (09) : 3267 - 3276
  • [7] Finite p-groups all of whose non-abelian proper subgroups are generated by two elements
    Xu, Mingyao
    An, Lijian
    Zhang, Qinhai
    [J]. JOURNAL OF ALGEBRA, 2008, 319 (09) : 3603 - 3620