HYBRID COMBINATIONS OF PARAMETRIC AND EMPIRICAL LIKELIHOODS

被引:4
作者
Hjort, Nils Lid [1 ]
McKeague, Ian W. [2 ]
Van Keilegom, Ingrid [3 ]
机构
[1] Univ Oslo, Dept Math, PB 1053 Blindern, N-0316 Oslo, Norway
[2] Columbia Univ, Dept Biostat, 722 West 168th St,MSPH Box 12, New York, NY 10032 USA
[3] Katholieke Univ Leuven, ORSTAT, Naamsestr 69, B-3000 Leuven, Belgium
基金
欧洲研究理事会;
关键词
Agnostic parametric inference; focus parameter; robust methods; semiparametric estimation; MODEL;
D O I
10.5705/ss.202017.0291
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops a hybrid likelihood (HL) method based on a compromise between parametric and nonparametric likelihoods. Consider the setting of a parametric model for the distribution of an observation Y with parameter theta. Suppose there is also an estimating function m(., mu) identifying another parameter mu via E m(Y,mu) = 0, at the outset defined independently of the parametric model. To borrow strength from the parametric model while obtaining a degree of robustness from the empirical likelihood method, we formulate inference about theta in terms of the hybrid likelihood function H-n(theta) = L-n(theta)(1-a) R-n(mu(theta))(a). Here a is an element of [0,1) represents the extent of the compromise, L-n is the ordinary parametric likelihood for theta, R-n is the empirical likelihood function, and mu is considered through the lens of the parametric model. We establish asymptotic normality of the corresponding HL estimator and a version of the Wilks theorem. We also examine extensions of these results under misspecification of the parametric model, and propose methods for selecting the balance parameter a.
引用
收藏
页码:2389 / 2407
页数:19
相关论文
共 16 条
[1]  
Chang J, 2017, STAT SINICA, Vxx, pxx
[2]   Rendering parametric procedures more robust by empirically tilting the model [J].
Choi, E ;
Hall, P ;
Presnell, B .
BIOMETRIKA, 2000, 87 (02) :453-465
[3]  
Claeskens G., 2006, Model selection and model averaging, DOI DOI 10.1017/CBO9780511790485.003
[4]  
DICICCIO TJ, 1989, BIOMETRIKA, V76, P465, DOI 10.1093/biomet/76.3.465
[5]  
Ferguson T.S., 2020, A Course in Large Sample Theory
[6]  
Hjort N. L., 1994, TECHNICAL REPORT
[7]   EXTENDING THE SCOPE OF EMPIRICAL LIKELIHOOD [J].
Hjort, Nils Lid ;
McKeague, Ian W. ;
Van Keilegom, Ingrid .
ANNALS OF STATISTICS, 2009, 37 (03) :1079-1111
[8]   Frequentist model average estimators [J].
Hjort, NL ;
Claeskens, G .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (464) :879-899
[9]   Empirical Likelihood for Non-Smooth Criterion Functions [J].
Molanes Lopez, Elisa M. ;
Van Keilegom, Ingrid ;
Veraverbeke, Noel .
SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (03) :413-432
[10]  
Owen A.B., 2001, EMPIRICAL LIKELIHOOD