NONLINEAR EQUATIONS FOR FRACTIONAL LAPLACIANS II: EXISTENCE, UNIQUENESS, AND QUALITATIVE PROPERTIES OF SOLUTIONS

被引:162
作者
Cabre, Xavier [1 ,2 ]
Sire, Yannick [3 ,4 ]
机构
[1] ICREA, Dept Matemat Aplicada 1, Barcelona 08028, Spain
[2] Univ Politecn Cataluna, E-08028 Barcelona, Spain
[3] Univ Paul Cezanne, Fac Sci & Tech, LATP, F-13397 Marseille 20, France
[4] CNRS, LATP, CMI, F-13453 Marseille 13, France
关键词
CONJECTURE; SYMMETRY; REGULARITY; SPACE;
D O I
10.1090/S0002-9947-2014-05906-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper, which is the follow-up to part I, concerns the equation (-Delta)(s)v + G'(v) = 0 in R-n, with s is an element of (0, 1), where (-Delta)(s) stands for the fractional Laplacian-the infinitesimal generator of a Levy process. When n = 1, we prove that there exists a layer solution of the equation (i.e., an increasing solution with limits +/- 1 at +/-infinity) if and only if the potential G has only two absolute minima in [-1, 1], located at +/- 1 and satisfying G'(-1) = G'(1) = 0. Under the additional hypotheses G ''(-1) > 0 and G ''(1) > 0, we also establish its uniqueness and asymptotic behavior at infinity. Furthermore, we provide with a concrete, almost explicit, example of layer solution. For n >= 1, we prove some results related to the one-dimensional symmetry of certain solutions-in the spirit of a well-known conjecture of De Giorgi for the standard Laplacian.
引用
收藏
页码:911 / 941
页数:31
相关论文
共 24 条
[1]  
Adams Robert A., 1975, PURE APPL MATH, V65
[2]   On a long-standing conjecture of E.!De Giorgi:: Symmetry in 3D for general nonlinearities and a local minimality property [J].
Alberti, G ;
Ambrosio, L ;
Cabré, X .
ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) :9-33
[3]   Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi [J].
Ambrosio, L ;
Cabré, X .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (04) :725-739
[4]  
[Anonymous], 2002, PROPRIETES QUALITATI
[5]  
Barlow MT, 2000, COMMUN PUR APPL MATH, V53, P1007, DOI 10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.0.CO
[6]  
2-U
[7]  
Berestycki H, 2000, DUKE MATH J, V103, P375
[8]  
Bertoin Jean, 1996, CAMBRIDGE TRACTS MAT, V121
[9]   Layer solutions in a half-space for boundary reactions [J].
Cabré, X ;
Solà-Morales, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (12) :1678-1732
[10]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53