miR-222 Is Necessary for Exercise-Induced Cardiac Growth and Protects against Pathological Cardiac Remodeling

被引:356
作者
Liu, Xiaojun [1 ,2 ]
Xiao, Junjie [3 ,4 ]
Zhu, Han [1 ,2 ]
Wei, Xin [1 ,2 ]
Platt, Colin [1 ,2 ]
Damilano, Federico [1 ,2 ]
Xiao, Chunyang [1 ,2 ]
Bezzerides, Vassilios [1 ,2 ,5 ]
Bostrom, Pontus [6 ]
Che, Lin [7 ]
Zhang, Chunxiang [8 ]
Spiegelman, Bruce M. [2 ,9 ]
Rosenzweig, Anthony [1 ,2 ,10 ]
机构
[1] Beth Israel Deaconess Med Ctr, Cardiovasc Div, Boston, MA 02215 USA
[2] Harvard Univ, Sch Med, Boston, MA 02215 USA
[3] Shanghai Univ, Sch Life Sci, Regenerat Lab, Shanghai 200444, Peoples R China
[4] Shanghai Univ, Sch Life Sci, Expt Ctr Life Sci, Shanghai 200444, Peoples R China
[5] Boston Childrens Hosp, Cardiovasc Dept, Boston, MA 02215 USA
[6] Karolinska Inst, Dept Cell & Mol Biol, Stockholm, Sweden
[7] Tongji Univ, Tongji Hosp, Sch Med, Shanghai 200065, Peoples R China
[8] Rush Univ, Rush Med Coll, Chicago, IL 60612 USA
[9] Dana Farber Canc Inst, Boston, MA 02115 USA
[10] Massachusetts Gen Hosp, Cardiovasc Div, Boston, MA 02115 USA
基金
中国国家自然科学基金;
关键词
CELL-PROLIFERATION; MICE LACKING; MICRORNAS; NEUROGENESIS; HYPERTROPHY; HYPERPLASIA; EXPRESSION; CLUSTERS; INJURY; ROLES;
D O I
10.1016/j.cmet.2015.02.014
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Exercise induces physiological cardiac growth and protects the heart against pathological remodeling. Recent work suggests exercise also enhances the heart's capacity for repair, which could be important for regenerative therapies. While microRNAs are important in certain cardiac pathologies, less is known about their functional roles in exercise-induced cardiac phenotypes. We profiled cardiac microRNA expression in two distinct models of exercise and found microRNA-222 (miR-222) was upregulated in both. Downstream miR-222 targets modulating cardiomyocyte phenotypes were identified, including HIPK1 and HMBOX1. Inhibition of miR-222 in vivo completely blocked cardiac and cardiomyocyte growth in response to exercise while reducing markers of cardiomyocyte proliferation. Importantly, mice with inducible cardiomyocyte miR-222 expression were resistant to adverse cardiac remodeling and dysfunction after ischemic injury. These studies implicate miR-222 as necessary for exercise-induced cardiomyocyte growth and proliferation in the adult mammalian heart and show that it is sufficient to protect the heart against adverse remodeling.
引用
收藏
页码:584 / 595
页数:12
相关论文
共 49 条
[1]   Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training [J].
Baggish, Aaron L. ;
Hale, Andrew ;
Weiner, Rory B. ;
Lewis, Gregory D. ;
Systrom, David ;
Wang, Francis ;
Wang, Thomas J. ;
Chan, Stephen Y. .
JOURNAL OF PHYSIOLOGY-LONDON, 2011, 589 (16) :3983-3994
[2]   Proteomic analysis reveals late exercise effects on cardiac remodeling following myocardial infarction [J].
Bansal, Arvin ;
Dai, Qiuxia ;
Chiao, Ying Ann ;
Hakala, Kevin W. ;
Zhang, John Q. ;
Weintraub, Susan T. ;
Lindsey, Merry L. .
JOURNAL OF PROTEOMICS, 2010, 73 (10) :2041-2049
[3]   Evidence for Cardiomyocyte Renewal in Humans [J].
Bergmann, Olaf ;
Bhardwaj, Ratan D. ;
Bernard, Samuel ;
Zdunek, Sofia ;
Barnabe-Heider, Fanie ;
Walsh, Stuart ;
Zupicich, Joel ;
Alkass, Kanar ;
Buchholz, Bruce A. ;
Druid, Henrik ;
Jovinge, Stefan ;
Frisen, Jonas .
SCIENCE, 2009, 324 (5923) :98-102
[4]   Neuregulin1/ErbB4 Signaling Induces Cardiomyocyte Proliferation and Repair of Heart Injury [J].
Bersell, Kevin ;
Arab, Shima ;
Haring, Bernhard ;
Kuehn, Bernhard .
CELL, 2009, 138 (02) :257-270
[5]   C/EBPβ Controls Exercise-Induced Cardiac Growth and Protects against Pathological Cardiac Remodeling [J].
Bostroem, Pontus ;
Mann, Nina ;
Wu, Jun ;
Quintero, Pablo A. ;
Plovie, Eva R. ;
Panakova, Daniela ;
Gupta, Rana K. ;
Xiao, Chunyang ;
MacRae, Calum A. ;
Rosenzweig, Anthony ;
Spiegelman, Bruce M. .
CELL, 2010, 143 (07) :1072-1083
[6]   NFATc2 is a necessary mediator of calcineurin-dependent cardiac hypertrophy and heart failure [J].
Bourajjaj, Meriem ;
Armand, Anne-Sophie ;
Martins, Paula A. da Costa ;
Weijts, Bart ;
van der Nagel, Roel ;
Heeneman, Sylvia ;
Wehrens, Xander H. ;
De Windt, Leon J. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (32) :22295-22303
[7]   MicroRNA-133 controls cardiac hypertrophy [J].
Care, Alessandra ;
Catalucci, Daniele ;
Felicetti, Federica ;
Bonci, Desiree ;
Addario, Antonio ;
Gallo, Paolo ;
Bang, Marie-Louise ;
Segnalini, Patrizia ;
Gu, Yusu ;
Dalton, Nancy D. ;
Elia, Leonardo ;
Latronico, Michael V. G. ;
Hoydal, Morten ;
Autore, Camillo ;
Russo, Matteo A. ;
Dorn, Gerald W., II ;
Ellingsen, Oyvind ;
Ruiz-Lozano, Pilar ;
Peterson, Kirk L. ;
Croce, Carlo M. ;
Peschle, Cesare ;
Condorelli, Gianluigi .
NATURE MEDICINE, 2007, 13 (05) :613-618
[8]   Isolation and functional analysis of human HMBOX1, a homeobox containing protein with transcriptional repressor activity [J].
Chen, S. ;
Saiyin, H. ;
Zeng, X. ;
Xi, J. ;
Liu, X. ;
Li, X. ;
Yu, L. .
CYTOGENETIC AND GENOME RESEARCH, 2006, 114 (02) :131-136
[9]   Swimming Training in Rats Increases Cardiac MicroRNA-126 Expression and Angiogenesis [J].
Da Silva, Natan D., Jr. ;
Fernandes, Tiago ;
Soci, Ursula P. R. ;
Monteiro, Alex Willian A. ;
Phillips, M. Ian ;
de Oliveira, Edilamar Menezes .
MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2012, 44 (08) :1453-1462
[10]   Pathological Role of Serum- and Glucocorticoid-Regulated Kinase 1 in Adverse Ventricular Remodeling [J].
Das, Saumya ;
Aiba, Takeshi ;
Rosenberg, Michael ;
Hessler, Katherine ;
Xiao, Chunyang ;
Quintero, Pablo A. ;
Ottaviano, Filomena G. ;
Knight, Ashley C. ;
Graham, Evan L. ;
Bostroem, Pontus ;
Morissette, Michael R. ;
del Monte, Federica ;
Begley, Michael J. ;
Cantley, Lewis C. ;
Ellinor, Patrick T. ;
Tomaselli, Gordon F. ;
Rosenzweig, Anthony .
CIRCULATION, 2012, 126 (18) :2208-+