Error estimates for a fundamental solution method applied to reduced wave problems in a domain exterior to a disc

被引:9
作者
Ushijima, T [1 ]
Chiba, F [1 ]
机构
[1] Univ Electrocommun, Fac Electrocommun, Dept Comp Sci, Chofu, Tokyo 1828585, Japan
基金
日本学术振兴会;
关键词
Helmholtz equation; fundamental solution method; collocation method for an integral equation of convolution type;
D O I
10.1016/S0377-0427(03)00559-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns error estimates for an approximation method for solving the Dirichlet boundary value problem of the 2-dimensional reduced wave equation in the exterior region of a disc from theoretical and practical points of view. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:137 / 148
页数:12
相关论文
共 26 条
[21]   Explicit time integration with lumped mass matrix for enriched finite elements solution of time domain wave problems [J].
Drolia, M. ;
Mohamed, M. S. ;
Laghrouche, O. ;
Seaid, M. ;
El Kacimi, A. .
APPLIED MATHEMATICAL MODELLING, 2020, 77 :1273-1293
[22]   Comparison between the formulation of the boundary element method that uses fundamental solution dependent of frequency and the direct radial basis boundary element formulation for solution of Helmholtz problems [J].
Loeffler, C. F. ;
Pereira, P. V. M. ;
Lara, L. O. C. ;
Mansur, W. J. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2017, 79 :81-87
[23]   A parallel domain decomposition boundary element method approach for the solution of large-scale transient heat conduction problems [J].
Erhart, Kevin ;
Divo, Eduardo ;
Kassab, Alain J. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2006, 30 (07) :553-563
[24]   Dispersion error reduction for interior acoustic problems using the radial point interpolation meshless method with plane wave enrichment functions [J].
Gui, Qiang ;
Zhang, Yang ;
Chai, Yingbin ;
You, Xiangyu ;
Li, Wei .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 143 :428-441
[25]   Mosaic-skeleton method as applied to the numerical solution of three-dimensional Dirichlet problems for the Helmholtz equation in integral form [J].
A. A. Kashirin ;
S. I. Smagin ;
M. Yu. Taltykina .
Computational Mathematics and Mathematical Physics, 2016, 56 :612-625
[26]   Mosaic-skeleton method as applied to the numerical solution of three-dimensional Dirichlet problems for the Helmholtz equation in integral form [J].
Kashirin, A. A. ;
Smagin, S. I. ;
Taltykina, M. Yu. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (04) :612-625