A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements

被引:52
作者
Ainsworth, Mark [1 ]
机构
[1] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland
关键词
a posteriori error estimation; mixed finite element method; computable error bounds;
D O I
10.1137/06067331X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the lowest order Raviart-Thomas mixed finite element, we derive an a posteriori error estimator that provides actual, guaranteed computable upper bounds on the error in the flux variable regardless of jumps in the material coefficients across interfaces. Moreover, the estimator is efficient in that it provides a local lower bound on the error up to a constant that is independent of the solution and the local mesh-size. The estimator may be evaluated at virtually no additional cost compared to the evaluation of the finite element approximation itself.
引用
收藏
页码:189 / 204
页数:16
相关论文
共 20 条
[1]  
Achchab B, 1998, NUMER MATH, V80, P159, DOI 10.1007/s002110050364
[2]   Robust a posteriori error estimation for nonconforming finite element approximation [J].
Ainsworth, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2320-2341
[3]   Error estimators for a mixed method [J].
Alonso, A .
NUMERISCHE MATHEMATIK, 1996, 74 (04) :385-395
[4]  
ARNOLD DN, 1985, RAIRO-MATH MODEL NUM, V19, P7
[5]  
Baranger J., 1991, Matematica Aplicada e Computacional, V10, P89
[6]   Posteriori error estimators for the Raviart-Thomas element [J].
Braess, D ;
Verfurth, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (06) :2431-2444
[7]   SUPERCONVERGENCE AND A-POSTERIORI ERROR ESTIMATION FOR TRIANGULAR MIXED FINITE-ELEMENTS [J].
BRANDTS, JH .
NUMERISCHE MATHEMATIK, 1994, 68 (03) :311-324
[8]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[9]   A posteriori error estimate for the mixed finite element method [J].
Carstensen, C .
MATHEMATICS OF COMPUTATION, 1997, 66 (218) :465-476
[10]  
CROUZEIX M, 1973, REV FR AUTOMAT INFOR, V7, P33