An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale

被引:87
|
作者
Blum, AS
Soto, CM
Wilson, CD
Brower, TL
Pollack, SK
Schull, TL
Chatterji, A
Lin, TW
Johnson, JE
Amsinck, C
Franzon, P
Shashidhar, R
Ratna, BR
机构
[1] USN, Res Lab, Ctr Biomol Sci & Engn, Washington, DC 20375 USA
[2] Geocenters Inc, Newton, MA 02459 USA
[3] Scripps Res Inst, Dept Biol Mol, La Jolla, CA 92037 USA
[4] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
关键词
molecular electronics; nanotechnology; protein engineering; self-assembly; viruses;
D O I
10.1002/smll.200500021
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A three-dimensional bottom-up self-assembly technique is developed to use biomolecules such as DNA as scaffolds. The use of viruses as nanoscale scaffolds for devices provide the exquisite control of positioning on the nanoscale. The efficacy of the approach is tested on 3D conductive molecular networks using cowpea mosaic virus (CPMV) as a scaffold. The conductance of the molecular network self-assembled on a single virus is measured using scanning tunneling microscopy (STM), which shows isolated conductive viral nanoblocks (VNB) attached to a gold substrate through a conducting molecule inserted in an insulating C11 matrix. It is observed that red connections are the least important in the formation of the network, such that their removal decreases the network conductance by just 6% to 94% of the maximum. This bottom-up approach uses different types of molecules for functions such as wires, switches, and diodes to build electronic circuits to increase the theoretical device density.
引用
收藏
页码:702 / 706
页数:5
相关论文
共 50 条
  • [1] Three dimensional self-assembly at the nanoscale
    Gracias, D. H.
    INDEPENDENT COMPONENT ANALYSES, COMPRESSIVE SAMPLING, WAVELETS, NEURAL NET, BIOSYSTEMS, AND NANOENGINEERING XI, 2013, 8750
  • [2] Coordinated Three-Dimensional Robotic Self-Assembly
    Kelly, Jonathan
    Zhang, Hong
    2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, VOLS 1-4, 2009, : 172 - +
  • [3] SELF-ASSEMBLY OF THREE-DIMENSIONAL NANOPOROUS CONTAINERS
    Wang, Jaihai
    Patel, Mira
    Gracias, David H.
    NANO, 2009, 4 (01) : 1 - 5
  • [4] Solder self-assembly for three-dimensional microelectromechanical systems
    Harsh, KF
    Bright, VM
    Lee, YC
    SENSORS AND ACTUATORS A-PHYSICAL, 1999, 77 (03) : 237 - 244
  • [5] Three-dimensional sequential self-assembly of microscale objects
    Onoe, Hiroaki
    Matsumoto, Kiyoshi
    Shimoyama, Isao
    SMALL, 2007, 3 (08) : 1383 - 1389
  • [6] In Situ Monitored Self-Assembly of Three-Dimensional Polyhedral Nanostructures
    Dai, Chunhui
    Cho, Jeong-Hyun
    NANO LETTERS, 2016, 16 (06) : 3655 - 3660
  • [7] Three-dimensional micro self-assembly using bridging flocculation
    Nakakubo, T
    Shimoyama, I
    SENSORS AND ACTUATORS A-PHYSICAL, 2000, 83 (1-3) : 161 - 166
  • [8] Self-Assembly of Functional Discrete Three-Dimensional Architectures in Water
    Taylor, Lauren L. K.
    Riddell, Imogen A.
    Smulders, Maarten M. J.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (05) : 1280 - 1307
  • [9] Capsules, cages and three-dimensional hosts: Self-assembly of complementary monomers
    Johnston, MR
    Latter, MJ
    SUPRAMOLECULAR CHEMISTRY, 2005, 17 (08) : 595 - 607
  • [10] Polymer-Induced Self-Assembly of a Three-Dimensional Mesoscale Structure
    Kawai, Ryota
    Mori, Yaoki
    Suzuki, Hiroaki
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2019, 28 (04) : 678 - 684