Multisoliton solutions of the matrix KdV equation

被引:31
作者
Goncharenko, VM [1 ]
机构
[1] Financial Acad, Moscow, Russia
关键词
D O I
10.1023/A:1005254131618
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider multisoliton solutions of the matrix KdV equation. We obtain the formulas for changing phases and amplitudes during the interaction of two solitons and prove that no multiparticle effects appear during the multisoliton interaction. We find the conditions ensuring the symmetry of the corresponding solutions of the matrix KdV equation if they are constructed by the matrix Darboux transformation applied to the Schrodinger operator with zero potential.
引用
收藏
页码:81 / 91
页数:11
相关论文
共 16 条
[1]  
Agranovich Z.S., 1960, The Inverse Problem of Scattering Theory
[2]   TRACE IDENTITIES IN THE INVERSE SCATTERING TRANSFORM METHOD ASSOCIATED WITH MATRIX SCHRODINGER-OPERATORS [J].
ALONSO, LM ;
OLMEDILLA, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (11) :2116-2121
[3]   NONLINEAR EVOLUTION EQUATIONS SOLVABLE BY INVERSE SPECTRAL TRANSFORM .2. [J].
CALOGERO, F ;
DEGASPERIS, A .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1977, 39 (01) :1-54
[4]  
DEGASPERIS A, 1978, NONLINEAR EVOLUTIONA, V26, P97
[5]  
Etingof P, 1997, MATH RES LETT, V4, P413
[6]  
ETINGOF P, 1997, QALG9701008
[7]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[8]   DETERMINANTS OF MATRICES OVER NONCOMMUTATIVE RINGS [J].
GELFAND, IM ;
RETAKH, VS .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1991, 25 (02) :91-102
[9]   Monodromy of the matrix Schrodinger equations and Darboux transformations [J].
Goncharenko, VM ;
Veselov, AP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (23) :5315-5326
[10]   Monodromy of the matrix Schrodinger equations and interaction of matrix solitons [J].
Goncharenko, VM .
RUSSIAN MATHEMATICAL SURVEYS, 2000, 55 (05) :995-997