Wandering subspace property of the shift operator on a class of invariant subspaces of the weighted Bergman space La2(dA2)

被引:0
作者
Wu, Changhui [1 ]
Yu, Tao [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
Weighted Bergman spaces; Quotient module; Beurling type theorem; Wandering subspace property;
D O I
10.1007/s43037-019-00039-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H-2(D-2) be the Hardy space over the bidisk D-2, and let K-0 = [(z - w)(2)] be the submodule generated by (z - w)(2). The related quotient module is N-0 = H-2(D-2)circle minus K-0. In this paper, by lifting the shift operator B-2 on the weighted Bergman space L-a(2)(dA(2)) as the compression of an isometry on a closed subspace of N-0, we prove that the shift operator B-2 possesses wandering subspace property on the H-a type submodules of L-a(2)(dA(2)). Also we show that Shimorin's condition fails for B-2 on some H-a type submodules of L-a(2)(dA(2)).
引用
收藏
页码:784 / 820
页数:37
相关论文
共 15 条
[1]   Beurling's theorem for the Bergman space [J].
Aleman, A ;
Richter, S ;
Sundberg, C .
ACTA MATHEMATICA, 1996, 177 (02) :275-310
[2]   INVARIANT SUBSPACES, DILATION THEORY, AND THE STRUCTURE OF THE PREDUAL OF A DUAL ALGEBRA .1. [J].
APOSTOL, C ;
BERCOVICI, H ;
FOIAS, C ;
PEARCY, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 63 (03) :369-404
[3]   ON 2 PROBLEMS CONCERNING LINEAR TRANSFORMATIONS IN HILBERT SPACE [J].
BEURLING, A .
ACTA MATHEMATICA, 1949, 81 (02) :239-255
[4]  
DOUGLAS RG, 1993, J ORISSA MATH SOC, V0012, P00075
[5]  
Hedenmalm H, 1996, J REINE ANGEW MATH, V477, P13
[6]  
HEDENMALM H, 1995, ACTA U UPSALIENSIS S, V58, P153
[7]  
Hedenmalm H., 1992, Complex Variables Theory Appl., V19, P165
[8]  
HEDENMALM PJH, 1993, J REINE ANGEW MATH, V443, P1
[9]  
Izuchi KJ, 2010, NEW YORK J MATH, V16, P489
[10]   Bergman-type reproducing kernels, contractive divisors, and dilations [J].
McCullough, S ;
Richter, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 190 (02) :447-480