Angiotensin-Converting Enzyme 3 (ACE3) Protects Against Pressure Overload-Induced Cardiac Hypertrophy

被引:11
作者
Yu, Chang-Jiang [1 ]
Tang, Liang-Liang [1 ]
Liang, Chen [1 ]
Chen, Xiao [1 ]
Song, Shu-Ying [1 ]
Ding, Xiao-Qing [1 ]
Zhang, Kun-Yu [1 ]
Song, Bin-Lin [1 ]
Zhao, Dan [2 ]
Zhu, Xue-Yong [3 ]
Li, Hong-Liang [3 ,4 ]
Zhang, Zhi-Ren [1 ,2 ]
机构
[1] Harbin Med Univ Canc Hosp, Heilongjiang Acad Med Sci, Inst Metab Dis, Harbin 150086, Peoples R China
[2] Minist Myocardial Ischemia Mech & Treatment, Key Labs Educ, Harbin, Peoples R China
[3] Wuhan Univ, Cardiovasc Res Inst, Wuhan 430072, Peoples R China
[4] Wuhan Univ, Dept Cardiol, Renmin Hosp, Wuhan 430072, Peoples R China
来源
JOURNAL OF THE AMERICAN HEART ASSOCIATION | 2016年 / 5卷 / 02期
关键词
angiotensin-converting enzyme 3; cardiac hypertrophy; ERK1/2; MEK1/2; signaling pathway; LEFT-VENTRICULAR MASS; KINASE; HEART; CALCINEURIN; INHIBITION; MECHANISMS; REGULATOR; FIBROSIS;
D O I
10.1161/JAHA.115.002680
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-Angiotensin-converting enzyme 3 (ACE3) is a recently defined homolog of ACE. However, the pathophysiological function of ACE3 is largely unknown. Here, we aim to explore the role of ACE3 in pathological cardiac hypertrophy. Methods and Results-Neonatal rat cardiomyocytes (NRCMs) with gain and loss of function of ACE3 and mice with global knockout or cardiac-specific overexpression of ACE3 were used in this study. In cultured cardiomyocytes, ACE3 conferred protection against angiotensin II (Ang II)-induced hypertrophic growth. Cardiac hypertrophy in mice was induced by aortic banding (AB) and the extent of hypertrophy was analyzed through echocardiographic, pathological, and molecular analyses. Our data demonstrated that ACE3-deficient mice exhibited more pronounced cardiac hypertrophy and fibrosis and a strong decrease in cardiac contractile function, conversely, cardiac-specific ACE3-overexpressing mice displayed an attenuated hypertrophic phenotype, compared with control mice, respectively. Analyses of the underlying molecular mechanism revealed that ACE3-mediated protection against cardiac hypertrophy by suppressing the activation of mitogen-activated protein kinase kinase (MEK)regulated extracellular signal-regulated protein kinase (ERK1/2) signaling, which was further evidenced by the observation that inhibition of the MEK-ERK1/2 signaling by U0126 rescued the exacerbated hypertrophic phenotype in ACE3-deficient mice. Conclusions-Our comprehensive analyses suggest that ACE3 inhibits pressure overload-induced cardiac hypertrophy by blocking the MEK-ERK1/2 signaling pathway.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [31] Evodiamine attenuates pressure overload-induced cardiac hypertrophy
    Li, Fangfang
    Yuan, Yuan
    Zhang, Ning
    Wu, Qingqing
    Li, Jin
    Zhou, Mengqiao
    Yang, Zheng
    Tang, Qizhu
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2017, 10 (07): : 10202 - 10213
  • [32] The Primary Benefits of Angiotensin-Converting Enzyme Inhibition on Cardiac Remodeling Occur During Sleep Time in Murine Pressure Overload Hypertrophy
    Martino, Tami A.
    Tata, Nazneen
    Simpson, Jeremy A.
    Vanderlaan, Rachel
    Dawood, Fayez
    Kabir, M. Golam
    Khaper, Neelam
    Cifelli, Carlo
    Podobed, Peter
    Liu, Peter P.
    Husain, Mansoor
    Heximer, Scott
    Backx, Peter H.
    Sole, Michael J.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2011, 57 (20) : 2020 - 2028
  • [33] Thymoquinone ameliorates pressure overload-induced cardiac hypertrophy by activating the AMPK signalling pathway
    Chen, Heng
    Zhuo, Chengui
    Zu, Aohan
    Yuan, Shuai
    Zhang, Han
    Zhao, Jianqiang
    Zheng, Liangrong
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2022, 26 (03) : 855 - 867
  • [34] Growth/differentiation factor 1 alleviates pressure overload-induced cardiac hypertrophy and dysfunction
    Zhang, Yan
    Zhang, Xiao-Fei
    Gao, Lu
    Liu, Yu
    Jiang, Ding-Sheng
    Chen, Ke
    Yang, Qinglin
    Fan, Guo-Chang
    Zhang, Xiao-Dong
    Huang, Congxin
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2014, 1842 (02): : 232 - 244
  • [35] Dickkopf-3 attenuates pressure overload-induced cardiac remodelling
    Zhang, Yan
    Liu, Yu
    Zhu, Xue-Hai
    Zhang, Xiao-Dong
    Jiang, Ding-Sheng
    Bian, Zhou-Yan
    Zhang, Xiao-Fei
    Chen, Ke
    Wei, Xiang
    Gao, Lu
    Zhu, Li-Hua
    Yang, Qinglin
    Fan, Guo-Chang
    Lau, Wayne B.
    Ma, Xinliang
    Li, Hongliang
    CARDIOVASCULAR RESEARCH, 2014, 102 (01) : 35 - 45
  • [36] Myoferlin alleviates pressure overload-induced cardiac hypertrophy and dysfunction by inhibiting NLRP3-mediated pyroptosis
    Zhou, Yang
    Liu, Yanxu
    Luo, Hao
    Wen, Cong
    Cui, Yangyang
    Du, Linqing
    Kwaku, Ofe Eugene
    Li, Lan
    Xiong, Lijuan
    Zheng, Jiankang
    Ding, Xuefeng
    Shen, Xiufeng
    Zhou, Peng
    Hu, Houxiang
    Yue, Rongchuan
    PEERJ, 2024, 12
  • [37] Oral sophocarpine protects rat heart against pressure overload-induced cardiac fibrosis
    Li, Jun
    Li, Liudong
    Chu, Hongxia
    Sun, Xiaojian
    Ge, Zhiming
    PHARMACEUTICAL BIOLOGY, 2014, 52 (08) : 1045 - 1051
  • [38] Effect of Pentraxin 3 on Pressure Overload-Induced Left Ventricular Hypertrophy
    Suzuki, Satoshi
    Shishido, Tetsuro
    Funayama, Akira
    Netsu, Shunsuke
    Takeishi, Yasuchika
    CIRCULATION RESEARCH, 2012, 111 (04)
  • [39] MicroRNA-27 attenuates pressure overload-Induced cardiac hypertrophy and dysfunction by targeting galectin-3
    Zhang, Meiqi
    Cheng, Kang
    Chen, Huan
    Tu, Jianfeng
    Shen, Ye
    Pang, Lingxiao
    Wu, Weihua
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2020, 689
  • [40] Semaglutide ameliorates pressure overload-induced cardiac hypertrophy by improving cardiac mitophagy to suppress the activation of NLRP3 inflammasome
    He, Wenxiu
    Wei, Jiahe
    Liu, Xing
    Zhang, Zhongyin
    Huang, Rongjie
    Jiang, Zhiyuan
    SCIENTIFIC REPORTS, 2024, 14 (01):