An a posteriori error estimate for a dual mixed method applied to Stokes system with non-null source terms

被引:3
作者
Barrios, Tomas P. [1 ]
Behrens, Edwin M. [2 ]
Bustinza, Rommel [3 ,4 ]
机构
[1] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Casilla 297, Concepcion, Chile
[2] Univ Catolica Santisima Concepcion, Dept Ingn Civil, Casilla 297, Concepcion, Chile
[3] Univ Concepcion, Ctr Invest Ingn Matemat CI2MA, Casilla 160-C, Concepcion, Chile
[4] Univ Concepcion, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
关键词
A posteriori error estimates; Dual mixed formulation; Stokes system; VELOCITY-PSEUDOSTRESS FORMULATION; FINITE-ELEMENT METHODS; PRIORI; FLOW;
D O I
10.1007/s10444-021-09906-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we focus our attention in the Stokes flow with nonhomogeneous source terms, formulated in dual mixed form. For the sake of completeness, we begin recalling the corresponding well-posedness at continuous and discrete levels. After that, and with the help of a kind of a quasi-Helmholtz decomposition of functions in H(div), we develop a residual type a posteriori error analysis, deducing an estimator that is reliable and locally efficient. Finally, we provide numerical experiments, which confirm our theoretical results on the a posteriori error estimator and illustrate the performance of the corresponding adaptive algorithm, supporting its use in practice.
引用
收藏
页数:34
相关论文
共 26 条
[1]  
Agmon S., 1965, VANNOSTRAND MATH STU, V2
[2]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[3]  
Barrios T.P., 2020, NOTE POSTERIORI ERRO
[4]   A stabilized mixed method applied to Stokes system with nonhomogeneous source terms: The stationary case Dedicated to Prof. R. Rodriguez, on the occasion of his 65th birthday [J].
Barrios, Tomas P. ;
Behrens, Edwin M. ;
Bustinza, Rommel .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2020, 92 (06) :509-527
[5]   An a posteriori error analysis of a velocity-pseudostress formulation of the generalized Stokes problem [J].
Barrios, Tomas P. ;
Bustinza, Rommel ;
Garcia, Galina C. ;
Gonzalez, Maria .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 357 :349-365
[6]   Low cost a posteriori error estimators for an augmented mixed FEM in linear elasticity [J].
Barrios, Tomas P. ;
Behrens, Edwin M. ;
Gonzalez, Maria .
APPLIED NUMERICAL MATHEMATICS, 2014, 84 :46-65
[7]   On stabilized mixed methods for generalized Stokes problem based on the velocity-pseudostress formulation: A priori error estimates [J].
Barrios, Tomas P. ;
Bustinza, Rommel ;
Garcia, Galina C. ;
Hernandez, Erwin .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 237 :78-87
[8]   Mixed Finite Element Methods for Incompressible Flow: Stationary Stokes Equations [J].
Cai, Zhiqiang ;
Tong, Charles ;
Vassilevski, Panayot S. ;
Wang, Chunbo .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (04) :957-978
[9]   Least-squares methods for incompressible Newtonian fluid flow: Linear stationary problems [J].
Cai, ZQ ;
Lee, B ;
Wang, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :843-859
[10]   A posteriori error estimates for nonconforming finite element methods [J].
Carstensen, C ;
Bartels, S ;
Jansche, S .
NUMERISCHE MATHEMATIK, 2002, 92 (02) :233-256