In NMR studies of large molecular structures, the number of conformational constraints based on NOE measurements is typically limited due to the need for partial deuteration. As a consequence, when using selective protonation of peripheral methyl groups on a perdeuterated background, stereospecific assignments of the diastereotopic methyl groups of Val and Leu can have a particularly large impact on the quality of the NMR structure determination. For example, 3D N-15- and C-13-resolved [H-1,H-1]-NOESY spectra of the E. Coli membrane protein OmpX in mixed micelles with DHPC, which have an overall molecular weight of about 60 kDa, showed that about 50% of all obtainable NOEs involve the diastereotopic methyl groups of Val and Leu. In this paper, we used biosynthetically-directed fractional C-13 labeling of OmpX and [C-13, H-1]-HSQC spectroscopy to obtain stereospecific methyl assignments of Val and Leu in OmpX/DHPC. For practical purposes it is of interest that this data could be obtained without use of a deuterated background, and that combinations of NMR experiments have been found for obtaining the desired information either at a H-1 frequency of 500 MHz, or with significantly reduced measuring time on a high-frequency instrument.