A Petri net approach to the study of persistence in chemical reaction networks

被引:130
作者
Angeli, David [2 ]
De Leenheer, Patrick [3 ]
Sontag, Eduardo D. [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08855 USA
[2] Univ Florence, Dipartimento Sistemi & Informat, Florence, Italy
[3] Univ Florida, Dept Math, Gainesville, FL USA
基金
美国国家科学基金会;
关键词
persistence; nonlinear dynamics; enzymatic cycles; biochemical networks;
D O I
10.1016/j.mbs.2007.07.003
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Persistence is the property, for differential equations in R-n, that solutions starting in the positive orthant do not approach the boundary of the orthant. For chemical reactions and population models, this translates into the non-extinction property: provided that every species is present at the start of the reaction, no species will tend to be eliminated in the course of the reaction. This paper provides checkable conditions for persistence of chemical species in reaction networks, using concepts and tools from Petri net theory, and verifies these conditions on various systems which arise in the modeling of cell signaling pathways. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:598 / 618
页数:21
相关论文
共 46 条
[1]   Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feed back systems [J].
Angeli, D ;
Ferrell, JE ;
Sontag, ED .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (07) :1822-1827
[2]   Monotone control systems [J].
Angeli, D ;
Sontag, ED .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (10) :1684-1698
[3]  
ANGELI D, 2006, P 14 IEEE MED C CONT
[4]  
ANGELI D, 2006, P IEEE C DEC CONTR S
[5]  
[Anonymous], THESIS MIT
[6]  
[Anonymous], 2005, HDB DIFFERENTIAL EQU
[7]   A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model [J].
Asthagiri, AR ;
Lauffenburger, DA .
BIOTECHNOLOGY PROGRESS, 2001, 17 (02) :227-239
[8]  
Aubin J.-P., 1984, DIFFERENTIAL INCLUSI, V264
[9]   UNIFORMLY PERSISTENT SYSTEMS [J].
BUTLER, G ;
FREEDMAN, HI ;
WALTMAN, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 96 (03) :425-430
[10]   PERSISTENCE IN DYNAMIC-SYSTEMS [J].
BUTLER, G ;
WALTMAN, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 63 (02) :255-263