Speaker Verification Using Gaussian Mixture Model

被引:0
作者
Jagtap, Shilpa S. [1 ]
Bhalke, D. G.
机构
[1] Rajarshi Shahu Coll Engn, Dept Elect & Telecommun Engn, Tathawade, India
来源
2015 INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING (ICPC) | 2015年
关键词
EER; feature extraction; GMM; MFCC; pitch;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, speaker verification system using Gaussian Mixture Model (GMM) is proposed. The proposed system consists of pre- processing, feature extraction, modelling and classification stage. The pre- processing is used to remove silent part of signal to reduce computational complexity. Pitch frequency and Mel Frequency Cepstral Coefficients(MFCC) are used as a feature vector for speaker verification system. Modelling is done using different combination of Gaussian mixture models. Simple distance measures are used for the classification between reference and the test signal.
引用
收藏
页数:5
相关论文
共 8 条
[1]   Speaker verification using support vector machines and high-level features [J].
Campbell, William M. ;
Campbell, Joseph P. ;
Gleason, Terry P. ;
Reynolds, Douglas A. ;
Shen, Wade .
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2007, 15 (07) :2085-2094
[2]  
Haris B. C., MULTIVARIABILITY SPE
[3]  
Kinnunen Tomi, 2012, IEEE T AUDIO SPEECH, V20
[4]  
Murty K. S. R., 2006, IEEE SIGNAL PROCESSI, V13
[5]  
Nakagawa S., 2012, IEEE T AUDIO SPEECH, V20
[6]  
Prasanna S. R. Mahadeva, 2011, IEEE T AUDIO SPEECH
[7]  
Vogt Robert, 2010, IEEE T AUDIO SPEECH, V18
[8]  
YEGNANARAYANA B, 2005, IEEE T SPEECH AUDIO, V13