Diagnostic Performance of Fractional Flow Reserve From CT Coronary Angiography With Analytical Method

被引:7
作者
Zhang, Jun-Mei [1 ,2 ]
Han, Huan [1 ]
Tan, Ru-San [1 ,2 ]
Chai, Ping [3 ,4 ]
Fam, Jiang Ming [1 ]
Teo, Lynette [4 ,5 ]
Chin, Chee Yang [1 ]
Ong, Ching Ching [4 ,5 ]
Low, Ris [1 ]
Chandola, Gaurav [1 ]
Leng, Shuang [1 ,2 ]
Huang, Weimin [6 ]
Allen, John C. [2 ]
Baskaran, Lohendran [1 ,2 ]
Kassab, Ghassan S. [7 ]
Low, Adrian Fatt Hoe [3 ]
Chan, Mark Yan-Yee [3 ,4 ]
Chan, Koo Hui [3 ,4 ]
Loh, Poay Huan [3 ,4 ]
Wong, Aaron Sung Lung [1 ,2 ]
Tan, Swee Yaw [1 ,2 ]
Chua, Terrance [1 ,2 ]
Lim, Soo Teik [1 ,2 ]
Zhong, Liang [1 ,2 ]
机构
[1] Natl Heart Ctr Singapore, Singapore, Singapore
[2] Duke NUS Med Sch, Singapore, Singapore
[3] Natl Univ, Dept Cardiol, Heart Ctr, Singapore, Singapore
[4] Natl Univ Singapore, Yong Loo Lin Sch Med, Singapore, Singapore
[5] Natl Univ Singapore Hosp, Dept Diagnost Imaging, Singapore, Singapore
[6] Agcy Sci Technol & Res, Inst Infocomm Res, Singapore, Singapore
[7] Calif Med Innovat Inst, San Diego, CA USA
基金
英国医学研究理事会;
关键词
coronary artery disease; fractional flow reserve; computed tomography coronary angiography; analytical method; non-invasive; COMPUTED-TOMOGRAPHY ANGIOGRAPHY; BLOOD-FLOW;
D O I
10.3389/fcvm.2021.739633
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The aim of this study was to evaluate a new analytical method for calculating non-invasive fractional flow reserve (FFRAM) to diagnose ischemic coronary lesions. Patients with suspected or known coronary artery disease (CAD) who underwent computed tomography coronary angiography (CTCA) and invasive coronary angiography (ICA) with FFR measurements from two sites were prospectively recruited. Obstructive CAD was defined as diameter stenosis (DS) >= 50% on CTCA or ICA. FFRAM was derived from CTCA images and anatomical features using analytical method and was compared with computational fluid dynamics (CFD)-based FFR (FFRB) and invasive ICA-based FFR. FFRAM, FFRB, and invasive FFR <= 0.80 defined ischemia. A total of 108 participants (mean age 60, range: 30-83 years, 75% men) with 169 stenosed coronary arteries were analyzed. The per-vessel accuracy, sensitivity, specificity, and positive predictive and negative predictive values were, respectively, 81, 75, 86, 81, and 82% for FFRAM and 87, 88, 86, 83, and 90% for FFRB. The area under the receiver operating characteristics curve for FFRAM (0.89 and 0.87) and FFRB (0.90 and 0.86) were higher than both CTCA- and ICA-derived DS (all p < 0.0001) on per-vessel and per-patient bases for discriminating ischemic lesions. The computational time for FFRAM was much shorter than FFRB (2.2 +/- 0.9 min vs. 48 +/- 36 min, excluding image acquisition and segmentation). FFRAM calculated from a novel and expeditious non-CFD approach possesses a comparable diagnostic performance to CFD-derived FFRB, with a significantly shorter computational time.
引用
收藏
页数:12
相关论文
共 35 条
[1]  
Abbara Suhny, 2009, J Cardiovasc Comput Tomogr, V3, P190, DOI 10.1016/j.jcct.2009.03.004
[2]   Visual and Quantitative Assessment of Coronary Stenoses at Angiography Versus Fractional Flow Reserve The Impact of Risk Factors [J].
Adjedj, Julien ;
Xaplanteris, Panagiotis ;
Toth, Gabor ;
Ferrara, Angela ;
Pellicano, Mariano ;
Ciccarelli, Giovanni ;
Flore, Vincent ;
Barbato, Emanuele ;
De Bruyne, Bernard .
CIRCULATION-CARDIOVASCULAR IMAGING, 2017, 10 (07)
[3]   Association of Coronary Stenosis and Plaque Morphology With Fractional Flow Reserve and Outcomes [J].
Ahmadi, Amir ;
Stone, Gregg W. ;
Leipsic, Jonathon ;
Serruys, Patrick W. ;
Shaw, Leslee ;
Hecht, Harvey ;
Wong, Graham ;
Norgaard, Bjarne Linde ;
O'Gara, Patrick T. ;
Chandrashekhar, Y. ;
Narula, Jagat .
JAMA CARDIOLOGY, 2016, 1 (03) :350-357
[4]   2012 American College of Cardiology Foundation/Society for Cardiovascular Angiography and Interventions Expert Consensus Document on Cardiac Catheterization Laboratory Standards Update A Report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents [J].
Bashore, Thomas M. ;
Balter, Stephen ;
Barac, Ana ;
Byrne, John G. ;
Cavendish, Jeffrey J. ;
Chambers, Charles E. ;
Hermiller, James Bernard, Jr. ;
Kinlay, Scott ;
Landzberg, Joel S. ;
Laskey, Warren K. ;
McKay, Charles R. ;
Miller, Julie M. ;
Moliterno, David J. ;
Moore, John W. M. ;
Oliver-McNeil, Sandra M. ;
Popma, Jeffrey J. ;
Tommaso, Carl L. ;
Harrington, Robert A. ;
Bates, Eric R. ;
Bhatt, Deepak L. ;
Bridges, Charles R. ;
Eisenberg, Mark J. ;
Ferrari, Victor A. ;
Fisher, John D. ;
Gardner, Timothy ;
Gentile, Federico ;
Gilson, Michael F. ;
Hlatky, Mark A. ;
Jacobs, Alice K. ;
Kaul, Sanjay ;
Moliterno, David J. ;
Mukherjee, Debabrata ;
Rosenson, Robert S. ;
Weitz, Howard H. ;
Wesley, Deborah J. ;
Holmes, David R., Jr. ;
Lewin, John C. ;
Oetgen, William J. ;
May, Charlene L. ;
Phoubandith, Dawn R. ;
Kharlamova, Tanja ;
Barrett, Erin A. ;
Ronan, Grace ;
Jones, Tiffany .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2012, 59 (24) :2221-2305
[5]   Fractional flow reserve as the standard of reference: All that glistens is not gold [J].
Benz, Dominik C. ;
Giannopoulos, Andreas A. .
JOURNAL OF NUCLEAR CARDIOLOGY, 2020, 27 (04) :1314-1316
[6]   Computed Tomography Coronary Angiography and Computational Fluid Dynamics Based Fractional Flow Reserve Before and After Percutaneous Coronary Intervention [J].
Chandola, Gaurav ;
Zhang, Jun-Mei ;
Tan, Ru-San ;
Chai, Ping ;
Teo, Lynette ;
Allen, John C. ;
Low, Ris ;
Huang, Weimin ;
Leng, Shuang ;
Fam, Jiang Ming ;
Chin, Chee Yang ;
Kassab, Ghassan S. ;
Low, Adrian Fatt Hoe ;
Tan, Swee Yaw ;
Chua, Terrance ;
Lim, Soo Teik ;
Zhong, Liang .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
[7]   Angiography-Based Machine Learning for Predicting Fractional Flow Reserve in Intermediate Coronary Artery Lesions [J].
Cho, Hyungjoo ;
Lee, June-Goo ;
Kang, Soo-Jin ;
Kim, Won-Jang ;
Choi, So-Yeon ;
Ko, Jiyuon ;
Min, Hyun-Seok ;
Choi, Gun-Ho ;
Kang, Do-Yoon ;
Lee, Pil Hyung ;
Ahn, Jung-Min ;
Park, Duk-Woo ;
Lee, Seung-Whan ;
Kim, Young-Hak ;
Lee, Cheol Whan ;
Park, Seong-Wook ;
Park, Seung-Jung .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2019, 8 (04)
[8]   Fractional Flow Reserve Computed from Noninvasive CT Angiography Data: Diagnostic Performance of an On-Site Clinician-operated Computational Fluid Dynamics Algorithm [J].
Coenen, Adriaan ;
Lubbers, Marisa M. ;
Kurata, Akira ;
Kono, Atsushi ;
Dedic, Admir ;
Chelu, Raluca G. ;
Dijkshoorn, Marcel L. ;
Gijsen, Frank J. ;
Ouhlous, Mohamed ;
van Geuns, Robert-Jan M. ;
Nieman, Koen .
RADIOLOGY, 2015, 274 (03) :674-683
[9]   Fractional Flow Reserve-Guided PCI versus Medical Therapy in Stable Coronary Disease [J].
De Bruyne, Bernard ;
Pijls, Nico H. J. ;
Kalesan, Bindu ;
Barbato, Emanuele ;
Tonino, Pim A. L. ;
Piroth, Zsolt ;
Jagic, Nikola ;
Mobius-Winckler, Sven ;
Rioufol, Gilles ;
Witt, Nils ;
Kala, Petr ;
MacCarthy, Philip ;
Engstrom, Thomas ;
Oldroyd, Keith G. ;
Mavromatis, Kreton ;
Manoharan, Ganesh ;
Verlee, Peter ;
Frobert, Ole ;
Curzen, Nick ;
Johnson, Jane B. ;
Jueni, Peter ;
Fearon, William F. .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 367 (11) :991-1001
[10]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845