Energy-Efficient Multi-task Multi-access Computation Offloading Via NOMA Transmission for IoTs

被引:81
作者
Wu, Yuan [1 ,2 ]
Shi, Binghua [3 ]
Qian, Li Ping [3 ,4 ]
Hou, Fen [1 ,5 ]
Cai, Jiali [3 ]
Shen, Xuemin Sherman [6 ]
机构
[1] Univ Macau, State Key Lab Internet Things Smart City, Taipa, Macao, Peoples R China
[2] Univ Macau, Dept Comp & Informat Sci, Taipa, Macao, Peoples R China
[3] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou 310023, Peoples R China
[4] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[5] Univ Macau, Dept Elect & Comp Engn, Taipa, Macao, Peoples R China
[6] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Task analysis; NOMA; Resource management; Energy consumption; Edge computing; Optimization; Computational modeling; Energy efficiency; multi-access mobile edge computing; non-orthogonal multiple access; NONORTHOGONAL MULTIPLE-ACCESS; RESOURCE-ALLOCATION; DELAY-MINIMIZATION; EDGE; INTERNET; ARCHITECTURE; NETWORKS; THINGS;
D O I
10.1109/TII.2019.2944839
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Driven by the explosive growth in computation-intensive applications in future 5G networks and industries, mobile edge computing (MEC), which enables smart terminals (STs) to offload their computation workloads to nearby edge servers (ESs) in radio access networks, has attracted increasing attention. In this article, we investigate the energy-efficient multitask multiaccess MEC via nonorthogonal multiple access (NOMA). Exploiting NOMA, an ST with multiple tasks can offload the respective computation workloads of different tasks to different ESs simultaneously. To study this problem, we adopt a two-step approach. Specifically, we first consider a given task-ES assignment and formulate a joint optimization of the tasks' computation offloading, local computation-resource allocation, and the NOMA-transmission duration, with the objective of minimizing the ST's total energy consumption for completing all tasks. Next, based on the optimal offloading solution for the given task-ES assignment, we further investigate how to properly assign different tasks to the ESs for further minimizing the ST's total energy consumption. For both the formulated problems, we propose efficient algorithms to compute the respective solutions. Numerical results are provided to validate the effectiveness of our proposed algorithms. The results also show that our proposed NOMA-enabled multitask multiaccess computation offloading can outperform conventional orthogonal multiple access based offloading scheme, especially when the tasks have heavy computation-workload requirements and stringent delay limits.
引用
收藏
页码:4811 / 4822
页数:12
相关论文
共 39 条
[1]  
[Anonymous], 2014, Convex Optimiza- tion
[2]  
[Anonymous], 2017, IEEE 5G TECH FOCUS
[3]   Computation Rate Maximization for Wireless Powered Mobile-Edge Computing With Binary Computation Offloading [J].
Bi, Suzhi ;
Zhang, Ying Jun .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (06) :4177-4190
[4]   Multi-User Multi-Task Offloading and Resource Allocation in Mobile Cloud Systems [J].
Chen, Meng-Hsi ;
Liang, Ben ;
Dong, Min .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (10) :6790-6805
[5]   Optimized Computation Offloading Performance in Virtual Edge Computing Systems via Deep Reinforcement Learning [J].
Chen, Xianfu ;
Zhang, Honggang ;
Wu, Celimuge ;
Mao, Shiwen ;
Ji, Yusheng ;
Bennis, Mehdi .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (03) :4005-4018
[6]   Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing [J].
Chen, Xu ;
Jiao, Lei ;
Li, Wenzhong ;
Fu, Xiaoming .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2016, 24 (05) :2827-2840
[7]   Air-Ground Integrated Mobile Edge Networks: Architecture, Challenges, and Opportunities [J].
Cheng, Nan ;
Xu, Wenchao ;
Shi, Weisen ;
Zhou, Yi ;
Lu, Ning ;
Zhou, Haibo ;
Shen, Xuemin .
IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (08) :26-32
[8]   Delay Minimization for NOMA-MEC Offloading [J].
Ding, Zhiguo ;
Ng, Derrick Wing Kwan ;
Schober, Robert ;
Poor, H. Vincent .
IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (12) :1875-1879
[9]   Application of Non-Orthogonal Multiple Access in LTE and 5G Networks [J].
Ding, Zhiguo ;
Liu, Yuanwei ;
Choi, Jinho ;
Sun, Qi ;
Elkashlan, Maged ;
I, Chih-Lin ;
Poor, H. Vincent .
IEEE COMMUNICATIONS MAGAZINE, 2017, 55 (02) :185-191
[10]   Learning for Computation Offloading in Mobile Edge Computing [J].
Dinh, Thinh Quang ;
La, Quang Duy ;
Quek, Tony Q. S. ;
Shin, Hyundong .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2018, 66 (12) :6353-6367