Pullback attractors for a non-autonomous generalized 2D parabolic system in an unbounded domain

被引:2
作者
Park, Jong Yeoul [1 ]
Park, Sun Hye [1 ]
机构
[1] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
关键词
Generalized parabolic systems; Navier-Stokes-Voight equation; Pullback attractor; Asymptotic compactness; Unbounded domain; REACTION-DIFFUSION EQUATIONS; BONA-MAHONY EQUATION; GLOBAL ATTRACTORS;
D O I
10.1016/j.na.2011.03.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of a pullback attractor is proven for a non-autonomous generalized 2D parabolic system in an unbounded domain. The asymptotic compactness of the solution operator is obtained by the uniform estimates on the tails of solutions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4046 / 4057
页数:12
相关论文
共 19 条
[1]   Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations [J].
Ball, JM .
JOURNAL OF NONLINEAR SCIENCE, 1997, 7 (05) :475-502
[2]  
Ball JM, 2004, DISCRETE CONT DYN-A, V10, P31
[3]   Pullback attractors for asymptotically compact non-autonomous dynamical systems [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) :484-498
[4]   Global attractors for 2D Navier-Stokes-Voight equations in an unbounded domain [J].
Celebi, A. O. ;
Kalantarov, V. K. ;
Polat, M. .
APPLICABLE ANALYSIS, 2009, 88 (03) :381-392
[5]  
Chepyzhov VV., 2002, Attractors for Equations of Mathematical Physics
[6]   Random attractors [J].
Crauel H. ;
Debussche A. ;
Flandoli F. .
Journal of Dynamics and Differential Equations, 1997, 9 (2) :307-341
[7]   Global Attractors and Determining Modes for the 3D Navier-Stokes-Voight Equations [J].
Kalantarov, Varga K. ;
Titi, Edriss S. .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 30 (06) :697-714
[8]  
KALANTAROV VK, 1988, THESIS ST PETERSBURG
[9]   Nonautonomous systems, cocycle attractors and variable time-step discretization [J].
Kloeden, PE ;
Schmalfuss, B .
NUMERICAL ALGORITHMS, 1997, 14 (1-3) :141-152
[10]  
Ladyzhenskaya O. A., 1963, The mathematical theory of viscous incompressible flow