Pentagonal quasigroups, their translatability and parastrophes

被引:0
作者
Dudek, Wieslaw A. [1 ]
Monzo, Robert A. R. [2 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, PL-50370 Wroclaw, Poland
[2] Flat 10,Crouch Hill, London N8 9RE, England
关键词
quasigroup; pentagonal quasigroup; translatability; idempotent;
D O I
10.1515/math-2021-0004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Any pentagonal quasigroup Q is proved to have the product xy = phi(x) + y - phi(y), where (Q, +) is an Abelian group, q) is its regular automorphism satisfying phi(4) - phi(3) + phi(2) - phi + epsilon = 0 and c is the identity mapping. All Abelian groups of order n < 100 inducing pentagonal quasigroups are determined. The variety of commutative, idempotent, medial groupoids satisfying the pentagonal identity (xy . x) y . x = y is proved to be the variety of commutative, pentagonal quasigroups, whose spectrum is {11(n) : n = 0, 1, 2,...}. We prove that the only translatable commutative pentagonal quasigroup is xy = (6x + 6y) (mod 11). The parastrophes of a pentagonal quasigroup are classified according to well-known types of idempotent translatable quasigroups. The translatability of a pentagonal quasigroup induced by the group Z n and its automorphism phi(x) = ax is proved to determine the value of a and the range of values of n.
引用
收藏
页码:184 / 197
页数:14
相关论文
共 10 条
[1]  
[Anonymous], 2016, QUASIGROUPS RELATED
[2]  
Dudek W., 2015, Quasigroups Relat. Syst, V23, P221
[3]  
Dudek W.A., 2020, QUASIGROUPS RELATED, V28, P203
[4]   The Structure of Idempotent Translatable Quasigroups [J].
Dudek, Wieslaw A. ;
Monzo, Robert A. R. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) :1603-1621
[5]   Translatability and translatable semigroups [J].
Dudek, Wieslaw A. ;
Monzo, Robert A. R. .
OPEN MATHEMATICS, 2018, 16 :1266-1282
[6]   Automorphisms of finite Abelian groups [J].
Hillar, Christopher J. ;
Rhea, Darren L. .
AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (10) :917-923
[7]  
Linder C., 1975, Journal Algebra Universalis, P191, DOI DOI 10.1007/BF02485252
[8]  
Shcherbacov V. A., 2017, MONOGR RES NOTES MAT, DOI DOI 10.1201/9781315120058
[9]  
Vidak, 2014, QUASIGROUPS RELATED, V22, P147
[10]  
Vinogradov I.M., 1965, FDN THEORY NUMBERS