Optical emission measurements of electron energy distributions in low-pressure argon inductively coupled plasmas

被引:90
作者
Boffard, John B. [1 ]
Jung, R. O. [1 ]
Lin, Chun C. [1 ]
Wendt, A. E. [2 ]
机构
[1] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
关键词
COLLISIONAL-RADIATIVE MODEL; CROSS-SECTIONS; IMPACT EXCITATION; METASTABLE LEVELS; CHLORINE PLASMAS; TEMPERATURES; DISCHARGE; GAS; DIAGNOSTICS; KINETICS;
D O I
10.1088/0963-0252/19/6/065001
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Optical modeling of emissions from low-temperature plasmas provides a non-invasive technique to measure the electron energy distribution function (EEDF) of the plasma. While many models assume the EEDF has a Maxwell-Boltzmann distribution, the EEDFs of numerous plasma systems deviate significantly from the Maxwellian form. In this paper, we present an optical emission model for the Ar(3p(5)4p -> 3p(5)4s) emission array which is capable of capturing details of non-Maxwellian distributions. Our model combines previously measured electron-impact excitation cross sections with Ar(3p(5)4s) number density measurements and emission spectra. The model also includes corrections for radiation trapping of the Ar(3p(5)4p -> 3p(5)4s) emission lines. Results obtained with this optical technique are compared with corresponding Langmuir probe measurements of the EEDF for Ar and Ar/N-2 inductively coupled plasma systems operating under a wide variety of source conditions (1-25mTorr, 20-1000W, % N-2 admixture). Both the optical emission method and probe measurements indicate the EEDF shapes are Maxwellian for low electron energies, but with depleted high energy tails.
引用
收藏
页数:15
相关论文
共 50 条
[21]   Numerical Simulation of Plasma Kinetics in a Low-Pressure Inductively Coupled Discharge in Argon and Mercury Mixtures [J].
Ben Halima, Ahlem ;
Hajji, Salem ;
Barkaoui, Ghada ;
Charrada, Kamel ;
Zissis, Georges .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2019, 47 (01) :162-172
[22]   Detection of fast electrons in pulsed argon inductively-coupled plasmas using the 420.1-419.8 nm emission line pair [J].
Boffard, John B. ;
Wang, S. ;
Lin, Chun C. ;
Wendt, A. E. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2015, 24 (06)
[23]   Dissociation fraction in low-pressure inductively coupled N2-Ar and O2-Ar plasmas [J].
Lee, Young Wook ;
Lee, Hye-lan ;
Chung, T. H. .
CURRENT APPLIED PHYSICS, 2011, 11 (05) :S187-S191
[24]   Experimental measurement of the total energy losses in a low pressure inductively coupled argon plasma [J].
Lee, Young-Kwang ;
Lee, Min-Hyong ;
Chung, Chin-Wook .
APPLIED PHYSICS LETTERS, 2009, 95 (11)
[25]   Argon metastable and resonant densities in a low-pressure Ar-N2 inductively coupled plasma [J].
Munoz, J. ;
Margot, J. ;
Chaker, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (45)
[26]   Electron energy distributions in a magnetized inductively coupled plasma [J].
Song, Sang-Heon ;
Yang, Yang ;
Chabert, Pascal ;
Kushner, Mark J. .
PHYSICS OF PLASMAS, 2014, 21 (09)
[27]   The effect of electron induced secondary electrons on the characteristics of low-pressure capacitively coupled radio frequency plasmas [J].
Horvath, B. ;
Schulze, J. ;
Donko, Z. ;
Derzsi, A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (35)
[28]   Global model for plasmas generated by electron beams in low-pressure nitrogen [J].
Lock, E. H. ;
Fernsler, R. F. ;
Slinker, S. P. ;
Singer, I. L. ;
Walton, S. G. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (42)
[29]   On the validity of neutral gas temperature by N2 rovibrational spectroscopy in low-pressure inductively coupled plasmas [J].
Poirier, J-S ;
Berube, P-M ;
Munoz, J. ;
Margot, J. ;
Stafford, L. ;
Chaker, M. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2011, 20 (03)
[30]   Characteristics of a non-Maxwellian electron energy distribution in a low-pressure argon plasma [J].
Park, Seolhye ;
Choe, Jae-Myung ;
Roh, Hyun-Joon ;
Kim, Gon-Ho .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2014, 64 (12) :1819-1827