MechRNA: prediction of lncRNA mechanisms from RNA-RNA and RNA-protein interactions

被引:46
作者
Gawronski, Alexander R. [1 ]
Uhl, Michael [2 ]
Zhang, Yajia [3 ,4 ]
Lin, Yen-Yi [1 ,5 ]
Niknafs, Yashar S. [6 ]
Ramnarine, Varune R. [5 ]
Malik, Rohit [6 ,10 ]
Feng, Felix [6 ,7 ,11 ,12 ,13 ]
Chinnaiyan, Arul M. [3 ,4 ,6 ,8 ]
Collins, Colin C. [5 ]
Sahinalp, S. Cenk [5 ,9 ]
Backofen, Rolf [2 ]
机构
[1] Simon Fraser Univ, Comp Sci, Burnaby, BC V5A 1S6, Canada
[2] Univ Freiburg, Ctr Biol Signalling Studies, D-79104 Freiburg, Germany
[3] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
[4] Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[5] Vancouver Prostate Ctr, Vancouver, BC V6H 3Z6, Canada
[6] Univ Michigan, Michigan Ctr Translat Pathol, Ann Arbor, MI 48109 USA
[7] Univ Michigan, Dept Radiat Oncol, Ann Arbor, MI 48109 USA
[8] Univ Michigan, Howard Hughes Med Inst, Ann Arbor, MI 48109 USA
[9] Indiana Univ, Dept Comp Sci, Bloomington, IN 47405 USA
[10] Bristol Myers Squibb Co, Princeton, NJ 08543 USA
[11] UCSF, Dept Radiat Oncol, San Francisco, CA 94115 USA
[12] UCSF, Dept Urol, San Francisco, CA 94115 USA
[13] UCSF, Dept Med, San Francisco, CA 94115 USA
基金
加拿大自然科学与工程研究理事会;
关键词
LONG NONCODING RNAS; BINDING PROTEIN; SECONDARY STRUCTURE; PARTITION-FUNCTION; MESSENGER-RNA; TARGET SITES; GENE; TRANSCRIPTION; TRANSLATION; EXPRESSION;
D O I
10.1093/bioinformatics/bty208
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Long non-coding RNAs (lncRNAs) are defined as transcripts longer than 200 nt that do not get translated into proteins. Often these transcripts are processed (spliced, capped and polyadenylated) and some are known to have important biological functions. However, most lncRNAs have unknown or poorly understood functions. Nevertheless, because of their potential role in cancer, lncRNAs are receiving a lot of attention, and the need for computational tools to predict their possible mechanisms of action is more than ever. Fundamentally, most of the known lncRNA mechanisms involve RNA-RNA and/or RNA-protein interactions. Through accurate predictions of each kind of interaction and integration of these predictions, it is possible to elucidate potential mechanisms for a given lncRNA. Results: Here, we introduce MechRNA, a pipeline for corroborating RNA-RNA interaction prediction and protein binding prediction for identifying possible lncRNA mechanisms involving specific targets or on a transcriptome-wide scale. The first stage uses a version of IntaRNA2 with added functionality for efficient prediction of RNA-RNA interactions with very long input sequences, allowing for large-scale analysis of lncRNA interactions with little or no loss of optimality. The second stage integrates protein binding information pre-computed by GraphProt, for both the lncRNA and the target. The final stage involves inferring the most likely mechanism for each lncRNA/target pair. This is achieved by generating candidate mechanisms from the predicted interactions, the relative locations of these interactions and correlation data, followed by selection of the most likely mechanistic explanation using a combined P-value. We applied MechRNA on a number of recently identified cancer-related lncRNAs (PCAT1, PCAT29 and ARLnc1) and also on two well-studied lncRNAs (PCA3 and 7SL). This led to the identification of hundreds of high confidence potential targets for each lncRNA and corresponding mechanisms. These predictions include the known competitive mechanism of 7SL with HuR for binding on the tumor suppressor TP53, as well as mechanisms expanding what is known about PCAT1 and ARLn1 and their targets BRCA2 and AR, respectively. For PCAT1-BRCA2, the mechanism involves competitive binding with HuR, which we confirmed using HuR immunoprecipitation assays.
引用
收藏
页码:3101 / 3110
页数:10
相关论文
共 65 条
[31]   Global or local? Predicting secondary structure and accessibility in mRNAs [J].
Lange, Sita J. ;
Maticzka, Daniel ;
Moehl, Mathias ;
Gagnon, Joshua N. ;
Brown, Chris M. ;
Backofen, Rolf .
NUCLEIC ACIDS RESEARCH, 2012, 40 (12) :5215-5226
[32]   Single-cell analysis of long non-coding RNAs in the developing human neocortex [J].
Liu, Siyuan John ;
Nowakowski, Tomasz J. ;
Pollen, Alex A. ;
Lui, Jan H. ;
Horlbeck, Max A. ;
Attenello, Frank J. ;
He, Daniel ;
Weissman, Jonathan S. ;
Kriegstein, Arnold R. ;
Diaz, Aaron A. ;
Lim, Daniel A. .
GENOME BIOLOGY, 2016, 17
[33]  
Liu Y., 2017, J GENET GENOMICS, V16, P1
[34]   ViennaRNA Package 2.0 [J].
Lorenz, Ronny ;
Bernhart, Stephan H. ;
Siederdissen, Christian Hoener Zu ;
Tafer, Hakim ;
Flamm, Christoph ;
Stadler, Peter F. ;
Hofacker, Ivo L. .
ALGORITHMS FOR MOLECULAR BIOLOGY, 2011, 6
[35]   Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J].
Love, Michael I. ;
Huber, Wolfgang ;
Anders, Simon .
GENOME BIOLOGY, 2014, 15 (12)
[36]   The lncRNA PCAT29 Inhibits Oncogenic Phenotypes in Prostate Cancer [J].
Malik, Rohit ;
Patel, Lalit ;
Prensner, John R. ;
Shi, Yang ;
Iyer, Matthew K. ;
Subramaniyan, Shruthi ;
Carley, Alexander ;
Niknafs, Yashar S. ;
Sahu, Anirban ;
Han, Sumin ;
Ma, Teng ;
Liu, Meilan ;
Asangani, Irfan A. ;
Jing, Xiaojun ;
Cao, Xuhong ;
Dhanasekaran, Saravana M. ;
Robinson, Dan R. ;
Feng, Felix Y. ;
Chinnaiyan, Arul M. .
MOLECULAR CANCER RESEARCH, 2014, 12 (08) :1081-1087
[37]   IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions [J].
Mann, Martin ;
Wright, Patrick R. ;
Backofen, Rolf .
NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) :W435-W439
[38]   The multidimensional mechanisms of long noncoding RNA function [J].
Marchese, Francesco P. ;
Raimondi, Ivan ;
Huarte, Maite .
GENOME BIOLOGY, 2017, 18
[39]   GraphProt: modeling binding preferences of RNA-binding proteins [J].
Maticzka, Daniel ;
Lange, Sita J. ;
Costa, Fabrizio ;
Backofen, Rolf .
GENOME BIOLOGY, 2014, 15 (01)
[40]   Natural antisense transcript stabilizes inducible nitric oxide synthase messenger RNA in rat hepatocytes [J].
Matsui, Kosuke ;
Nishizawa, Mikio ;
Ozaki, Takashi ;
Kimura, Tominori ;
Hashimoto, Iwao ;
Yamada, Masanori ;
Kabori, Masaki ;
Kamiyama, Yasuo ;
Ito, Seiji ;
Okumura, Tadayoshi .
HEPATOLOGY, 2008, 47 (02) :686-697