Quasi-Solid-State Single-Atom Transistors

被引:11
作者
Xie, Fangqing [1 ]
Peukert, Andreas [1 ]
Bender, Thorsten [1 ]
Obermair, Christian [1 ]
Wertz, Florian [1 ]
Schmieder, Philipp [1 ]
Schimmel, Thomas [1 ,2 ,3 ]
机构
[1] KIT, Inst Appl Phys, Campus South, D-76131 Karlsruhe, Germany
[2] KIT, Inst Nanotechnol, Campus North, D-76344 Eggenstein Leopoldhafen, Germany
[3] KIT, Mat Res Ctr Energy Syst MZE, Campus South, D-76131 Karlsruhe, Germany
关键词
atomic-scale electronics; nano-electromechanical systems; nanotechnology; quantum technologies; single-atom transistors; FIELD-EFFECT TRANSISTORS; LEAD-ACID-BATTERIES; SCALE TRANSISTORS; POINT CONTACTS; SILICA-GELS; QUANTIZATION; NANOCONTACTS; ELECTROLYTE; PERFORMANCE; NANOWIRES;
D O I
10.1002/adma.201801225
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The single-atom transistor represents a quantum electronic device at room temperature, allowing the switching of an electric current by the controlled and reversible relocation of one single atom within a metallic quantum point contact. So far, the device operates by applying a small voltage to a control electrode or "gate" within the aqueous electrolyte. Here, the operation of the atomic device in the quasi-solid state is demonstrated. Gelation of pyrogenic silica transforms the electrolyte into the quasi-solid state, exhibiting the cohesive properties of a solid and the diffusive properties of a liquid, preventing the leakage problem and avoiding the handling of a liquid system. The electrolyte is characterized by cyclic voltammetry, conductivity measurements, and rotation viscometry. Thus, a first demonstration of the single-atom transistor operating in the quasi-solid-state is given. The silver single-atom and atomic-scale transistors in the quasi-solid-state allow bistable switching between zero and quantized conductance levels, which are integer multiples of the conductance quantum G(0) = 2e(2)/h. Source-drain currents ranging from 1 to 8 mu A are applied in these experiments. Any obvious influence of the gelation of the aqueous electrolyte on the electron transport within the quantum point contact is not observed.
引用
收藏
页数:8
相关论文
共 42 条
  • [1] Quantum properties of atomic-sized conductors
    Agraït, N
    Yeyati, AL
    van Ruitenbeek, JM
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 377 (2-3): : 81 - 279
  • [2] CONDUCTANCE STEPS AND QUANTIZATION IN ATOMIC-SIZE CONTACTS
    AGRAIT, N
    RODRIGO, JG
    VIEIRA, S
    [J]. PHYSICAL REVIEW B, 1993, 47 (18): : 12345 - 12348
  • [3] Scattering and conductance quantization in three-dimensional metal nanocontacts
    Brandbyge, M
    Jacobsen, KW
    Norskov, JK
    [J]. PHYSICAL REVIEW B, 1997, 55 (04): : 2637 - 2650
  • [4] Electric-Field-Induced Resistive Switching in a Family of Mott Insulators: Towards a New Class of RRAM Memories
    Cario, Laurent
    Vaju, Cristian
    Corraze, Benoit
    Guiot, Vincent
    Janod, Etienne
    [J]. ADVANCED MATERIALS, 2010, 22 (45) : 5193 - +
  • [5] Practical Strategies for Power-Efficient Computing Technologies
    Chang, Leland
    Frank, David J.
    Montoye, Robert K.
    Koester, Steven J.
    Ji, Brian L.
    Coteus, Paul W.
    Dennard, Robert H.
    Haensch, Wilfried
    [J]. PROCEEDINGS OF THE IEEE, 2010, 98 (02) : 215 - 236
  • [6] Effects of preparation condition and particle size distribution on fumed silica gel valve-regulated lead-acid batteries performance
    Chen, M. Q.
    Chen, H. Y.
    Shu, D.
    Li, A. J.
    Finlow, D. E.
    [J]. JOURNAL OF POWER SOURCES, 2008, 181 (01) : 161 - 171
  • [7] Coury L., 1999, CURRENT SEPARATIONS, V18, P91
  • [8] MoS2 transistors with 1-nanometer gate lengths
    Desai, Sujay B.
    Madhvapathy, Surabhi R.
    Sachid, Angada B.
    Llinas, Juan Pablo
    Wang, Qingxiao
    Ahn, Geun Ho
    Pitner, Gregory
    Kim, Moon J.
    Bokor, Jeffrey
    Hu, Chenming
    Wong, H. -S. Philip
    Javey, Ali
    [J]. SCIENCE, 2016, 354 (6308) : 99 - 102
  • [9] A Practical Beginner's Guide to Cyclic Voltammetry
    Elgrishi, Noemie
    Rountree, Kelley J.
    McCarthy, Brian D.
    Rountree, Eric S.
    Eisenhart, Thomas T.
    Dempsey, Jillian L.
    [J]. JOURNAL OF CHEMICAL EDUCATION, 2018, 95 (02) : 197 - 206
  • [10] Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors
    Ferain, Isabelle
    Colinge, Cynthia A.
    Colinge, Jean-Pierre
    [J]. NATURE, 2011, 479 (7373) : 310 - 316