Efficient algorithm and convergence analysis of conservative SAV compact difference scheme for Boussinesq Paradigm equation

被引:4
|
作者
He, Yuyu [1 ,2 ]
Chen, Hongtao [1 ,2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Boussinesq Paradigm equation; Compact difference scheme; SAV approach; Conservation; Convergence analysis; CAUCHY-PROBLEM; GLOBAL EXISTENCE; STABILITY;
D O I
10.1016/j.camwa.2022.08.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct an efficient and conservative compact difference scheme based on the scalar auxiliary variable (SAV) approach for Boussinesq Paradigm (BP) equation. The compact difference scheme preserves the mass and discrete modified energy. We prove uniquely solvability of the compact difference scheme and analyze the bounded estimates of the numerical solution. The rates of convergence of second-order in temporal direction and fourth-order in spatial direction are given by using the discrete energy method in detail. Some numerical experiments are given to verify our theoretical analysis.
引用
收藏
页码:34 / 50
页数:17
相关论文
共 50 条
  • [1] A new conservative finite difference scheme for Boussinesq paradigm equation
    Kolkovska, Natalia
    Dimova, Milena
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (03): : 1159 - 1171
  • [2] Conservative Compact Finite Difference Scheme for the Coupled Schrodinger-Boussinesq Equation
    Liao, Feng
    Zhang, Luming
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (06) : 1667 - 1688
  • [3] Efficient and conservative compact difference scheme for the coupled Schrodinger-Boussinesq equations
    He, Yuyu
    Chen, Hongtao
    APPLIED NUMERICAL MATHEMATICS, 2022, 182 : 285 - 307
  • [4] Conservative finite difference methods for the Boussinesq paradigm equation
    Xie, Jianqiang
    Wang, Quanxiang
    Zhang, Zhiyue
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 206 : 588 - 613
  • [5] Efficient and conservative compact difference scheme for the coupled Schrödinger-Boussinesq equations
    He, Yuyu
    Chen, Hongtao
    Applied Numerical Mathematics, 2022, 182 : 285 - 307
  • [6] Convergence Analysis of Finite Difference Scheme for Sixth Order Boussinesq Equation
    Vucheva, V.
    Kolkovska, N.
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [7] Numerical analysis for a conservative difference scheme to solve the Schrodinger-Boussinesq equation
    Zhang, Luming
    Bai, Dongmei
    Wang, Shanshan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (17) : 4899 - 4915
  • [8] A conservative splitting difference scheme for the fractional-in-space Boussinesq equation
    Xie, Jianqiang
    Zhang, Zhiyue
    Liang, Dong
    APPLIED NUMERICAL MATHEMATICS, 2019, 143 : 61 - 74
  • [9] Numerical analysis of a conservative linear compact difference scheme for the coupled Schrodinger-Boussinesq equations
    Liao, Feng
    Zhang, Luming
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (05) : 961 - 978
  • [10] Unconditional L∞ convergence of a conservative compact finite difference scheme for the N-coupled Schrodinger-Boussinesq equations
    Liao, Feng
    Zhang, Luming
    Wang, Tingchun
    APPLIED NUMERICAL MATHEMATICS, 2019, 138 : 54 - 77