Mirror symmetry for K3 surfaces

被引:1
作者
Bott, C. J. [1 ]
Comparin, Paola [2 ]
Priddis, Nathan [3 ]
机构
[1] Texas A&M Univ, Dept Math, 344 BLOC, College Stn, TX 77840 USA
[2] Univ La Frontera, Dept Matemat & Estadist, Av Francisco Salazar 1145, Temuco, Chile
[3] Brigham Young Univ, Dept Math, 275 TMCB, Provo, UT 84602 USA
关键词
K3; surfaces; Mirror symmetry; Mirror lattices; Berglund-Hubsch-Krawitz construction; GINZBURG/CALABI-YAU CORRESPONDENCE;
D O I
10.1007/s10711-020-00548-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For certain K3 surfaces, there are two constructions of mirror symmetry that appear very different. The first, known as BHK mirror symmetry, comes from the Landau-Ginzburg model for the K3 surface; the other, known as LPK3 mirror symmetry, is based on a lattice polarization of the K3 surface in the sense of Dolgachev's definition. There is a large class of K3 surfaces for which both versions of mirror symmetry apply. In this class we consider the K3 surfaces admitting a certain purely non-symplectic automorphism of order 4, 8, or 12, and we complete the proof that these two formulations of mirror symmetry agree for this class of K3 surfaces.
引用
收藏
页码:21 / 55
页数:35
相关论文
共 33 条
[1]   The Berglund-Hubsch-Chiodo-Ruan mirror symmetry for K3 surfaces [J].
Artebani, Michela ;
Boissiere, Samuel ;
Sarti, Alessandra .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (04) :758-781
[2]  
Barth W. P., 2004, Folge. A Series of Modern Surveys in Mathematics Results in Mathematics and Related Areas, V4
[3]  
Batyrev V. V., 1994, J. Alg. Geom., V3, P493
[4]  
Belcastro S. -M., 1997, THESIS
[5]   LANDAU-GINZBURG ORBIFOLDS, MIRROR SYMMETRY AND THE ELLIPTIC GENUS [J].
BERGLUND, P ;
HENNINGSON, M .
NUCLEAR PHYSICS B, 1995, 433 (02) :311-332
[6]   A GENERALIZED CONSTRUCTION OF MIRROR MANIFOLDS [J].
BERGLUND, P ;
HUBSCH, T .
NUCLEAR PHYSICS B, 1993, 393 (1-2) :377-391
[7]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[8]  
Bott C.J, 2018, THESIS
[9]   A PAIR OF CALABI-YAU MANIFOLDS AS AN EXACTLY SOLUBLE SUPERCONFORMAL THEORY [J].
CANDELAS, P ;
DELAOSSA, XC ;
GREEN, PS ;
PARKES, L .
NUCLEAR PHYSICS B, 1991, 359 (01) :21-74
[10]  
Chiodo A., ARXIV190711785