Fundamental aspects to localize self-catalyzed III-V nanowires on silicon

被引:52
作者
Vukajlovic-Plestina, J. [1 ]
Kim, W. [1 ]
Ghisalberti, L. [1 ,2 ,3 ]
Varnavides, G. [2 ,3 ]
Tuetuencuoglu, G. [1 ]
Potts, H. [1 ]
Friedl, M. [1 ]
Gueniat, L. [1 ]
Carter, W. C. [1 ,2 ,3 ]
Dubrovskii, V. G. [4 ]
Fontcuberta i Morral, A. [1 ,5 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Mat, Lab Semicond Mat, CH-1015 Lausanne, Switzerland
[2] MIT, Dept Mat Sci, Cambridge, MA 02139 USA
[3] MIT, Dept Engn, Cambridge, MA 02139 USA
[4] ITMO Univ, Kronverkskiy Prospekt 49, St Petersburg 197101, Russia
[5] Ecole Polytech Fed Lausanne, Inst Phys, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
INDIUM-PHOSPHIDE NANOWIRES; GAAS NANOWIRES; CRYSTAL PHASE; GROWTH; NUCLEATION; GOLD;
D O I
10.1038/s41467-019-08807-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
III-V semiconductor nanowires deterministically placed on top of silicon electronic platform would open many avenues in silicon-based photonics, quantum technologies and energy harvesting. For this to become a reality, gold-free site-selected growth is necessary. Here, we propose a mechanism which gives a clear route for maximizing the nanowire yield in the self-catalyzed growth fashion. It is widely accepted that growth of nanowires occurs on a layerby-layer basis, starting at the triple-phase line. Contrary to common understanding, we find that vertical growth of nanowires starts at the oxide-substrate line interface, forming a ring-like structure several layers thick. This is granted by optimizing the diameter/height aspect ratio and cylindrical symmetry of holes, which impacts the diffusion flux of the group V element through the well-positioned group III droplet. This work provides clear grounds for realistic integration of III-Vs on silicon and for the organized growth of nanowires in other material systems.
引用
收藏
页数:7
相关论文
共 41 条
  • [1] RECOMBINATION PROPERTIES OF GOLD IN SILICON
    BEMSKI, G
    [J]. PHYSICAL REVIEW, 1958, 111 (06): : 1515 - 1518
  • [2] Trap-Assisted Tunneling in Si-InAs Nanowire Heterojunction Tunnel Diodes
    Bessire, Cedric D.
    Bjoerk, Mikael T.
    Schmid, Heinz
    Schenk, Andreas
    Reuter, Kathleen B.
    Riel, Heike
    [J]. NANO LETTERS, 2011, 11 (10) : 4195 - 4199
  • [3] Brakke K. A., 1992, Exp. Math, V1, P141, DOI DOI 10.1080/10586458.1992.10504253
  • [4] Critical diameters and temperature domains for MBE growth of III-V nanowires on lattice mismatched substrates
    Cirlin, G. E.
    Dubrovskii, V. G.
    Soshnikov, I. P.
    Sibirev, N. V.
    Samsonenko, Yu. B.
    Bouravleuv, A. D.
    Harmand, J. C.
    Glas, F.
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2009, 3 (04): : 112 - 114
  • [5] Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy
    Colombo, C.
    Spirkoska, D.
    Frimmer, M.
    Abstreiter, G.
    Morral, A. Fontcuberta I.
    [J]. PHYSICAL REVIEW B, 2008, 77 (15):
  • [6] Self-Assisted Nucleation and Vapor-Solid Growth of In As Nanowires on Bare Si(111)
    Dimakis, Emmanouil
    Laehnemann, Jonas
    Jahn, Uwe
    Breuer, Steffen
    Hilse, Maria
    Geelhaar, Lutz
    Riechert, Henning
    [J]. CRYSTAL GROWTH & DESIGN, 2011, 11 (09) : 4001 - 4008
  • [7] Zeldovich Nucleation Rate, Self-Consistency Renormalization, and Crystal Phase of Au-Catalyzed GaAs Nanowires
    Dubrovskii, V. G.
    Grecenkov, J.
    [J]. CRYSTAL GROWTH & DESIGN, 2015, 15 (01) : 340 - 347
  • [8] Stress-Driven Nucleation of Three-Dimensional Crystal Islands: From Quantum Dots to Nanoneedles
    Dubrovskii, V. G.
    Sibirev, N. V.
    Zhang, X.
    Suris, R. A.
    [J]. CRYSTAL GROWTH & DESIGN, 2010, 10 (09) : 3949 - 3955
  • [9] Growth kinetics and crystal structure of semiconductor nanowires
    Dubrovskii, V. G.
    Sibirev, N. V.
    Harmand, J. C.
    Glas, F.
    [J]. PHYSICAL REVIEW B, 2008, 78 (23)
  • [10] Theory of VLS Growth of Compound Semiconductors
    Dubrovskii, Vladimir G.
    [J]. SEMICONDUCTOR NANOWIRES I: GROWTH AND THEORY, 2015, 93 : 1 - 78