Two-phase problems for linear elliptic operators with variable coefficients:: Lipschitz free boundaries are C1,γ

被引:29
作者
Cerutti, MC
Ferrari, F
Salsa, S
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
[3] CIRAM, I-40123 Bologna, Italy
关键词
D O I
10.1007/s00205-003-0290-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove C-1,C-gamma regularity of Lipschitz free boundaries of two-phase problems for linear elliptic operators with Holder continuous coefficients.
引用
收藏
页码:329 / 348
页数:20
相关论文
共 11 条
[1]  
Ancona A., 1978, ANN I FOURIER GRENOB, V28, P169
[2]   Regularity of the free boundary in parabolic phase-transition problems [J].
Athanasopoulos, I ;
Caffarelli, L ;
Salsa, S .
ACTA MATHEMATICA, 1996, 176 (02) :245-282
[3]   BOUNDARY-BEHAVIOR OF NONNEGATIVE SOLUTIONS OF ELLIPTIC-OPERATORS IN DIVERGENCE FORM [J].
CAFFARELLI, L ;
FABES, E ;
MORTOLA, S ;
SALSA, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :621-640
[4]  
Caffarelli L. A., 1987, Rev. Mat. Iberoamericana, V3, P139
[6]  
Fabes Eugene B., 1988, Rev. Mat. Iberoam., V4, P227
[7]  
Feldman M, 2001, INDIANA U MATH J, V50, P1171
[8]  
Feldman M., 1997, DIFFERENTIAL INTEGRA, V10, P1171
[9]   BOUNDARY-BEHAVIOR OF HARMONIC-FUNCTIONS IN NON-TANGENTIALLY ACCESSIBLE DOMAINS [J].
JERISON, DS ;
KENIG, CE .
ADVANCES IN MATHEMATICS, 1982, 46 (01) :80-147
[10]  
Wang PY, 2000, COMMUN PUR APPL MATH, V53, P799, DOI 10.1002/(SICI)1097-0312(200007)53:7<799::AID-CPA1>3.0.CO