Geometric analysis of the dynamics of a double pendulum

被引:2
作者
Awrejcewicz, Jan [1 ]
Sendkowski, Dariusz [1 ]
机构
[1] Tech Univ Lodz, Dept Automat & Biomech, PL-90924 Lodz, Poland
关键词
pendulum; chaos; Riemannian geometry; EISENHART GEOMETRY; CHAOS; SYSTEMS;
D O I
10.2140/jomms.2007.2.1421
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we make use of Riemannian geometry to analyze the dynamics of a simple low dimensional system with constraints, namely a double physical pendulum. The dynamics are analyzed by means of the Jacobi-Levi-Civita equation and its solutions. We show that this geometrical approach is in qualitative agreement with the classical techniques devoted to the study of dynamical systems.
引用
收藏
页码:1421 / 1430
页数:10
相关论文
共 12 条
[1]   Geometrical approach to the swinging pendulum dynamics [J].
Awrejcewicz, J. ;
Sendkowski, D. ;
Kazmierczak, M. .
COMPUTERS & STRUCTURES, 2006, 84 (24-25) :1577-1583
[2]   Riemannian theory of Hamiltonian chaos and Lyapunov exponents [J].
Casetti, L ;
Clementi, C ;
Pettini, M .
PHYSICAL REVIEW E, 1996, 54 (06) :5969-5984
[3]   Geometric approach to Hamiltonian dynamics and statistical mechanics [J].
Casetti, L ;
Pettini, M ;
Cohen, EGD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 337 (03) :237-341
[4]   GEOMETRIC DESCRIPTION OF CHAOS IN SELF-GRAVITATING SYSTEMS [J].
CERRUTISOLA, M ;
PETTINI, M .
PHYSICAL REVIEW E, 1995, 51 (01) :53-64
[5]   Geometric description of chaos in two-degrees-of-freedom Hamiltonian systems [J].
CerrutiSola, M ;
Pettini, M .
PHYSICAL REVIEW E, 1996, 53 (01) :179-188
[6]   Geometry and chaos on Riemann and Finsler manifolds [J].
Di Bari, M ;
Cipriani, P .
PLANETARY AND SPACE SCIENCE, 1998, 46 (11-12) :1543-1555
[7]  
do Carmo Manfredo P., 1992, Riemannian Geometry
[8]  
Hairer E., 2006, GeometricNumericalIntegration: Structure-PreservingAlgorithmsforOrdinaryDifferentialEquations, V31
[9]  
LICHTENBERG AJ, 1992, APPL MATH SCI, V38
[10]  
Nakahara M., 1990, Graduate student series in physics