Prophylactic efficacy of a human monoclonal antibody against MERS-CoV in the common marmoset

被引:7
作者
de Wit, Emmie [1 ]
Feldmann, Friederike [2 ]
Horne, Eva [1 ]
Okumur, Atsushi [3 ]
Cameroni, Elisabetta [4 ]
Haddock, Elaine [1 ]
Saturday, Greg [2 ]
Scott, Dana [2 ]
Gopal, Robin [5 ]
Zambone, Maria [5 ]
Corti, Davide [4 ]
Feldmann, Heinz [1 ]
机构
[1] NIAID, Lab Virol, NIH, Hamilton, MT USA
[2] NIAID, Rocky Mt Vet Branch, NIH, Hamilton, MT USA
[3] Columbia Univ, Mailman Sch Publ Hlth, Ctr Infect & Immun, New York, NY USA
[4] Humabs BioMed SA, CH-6500 Humabs BioMed SA, Switzerland
[5] Publ Hlth England, Natl Infect Serv, London NW9 5EQ, England
关键词
MERS-CoV; Treatment; Prophylaxis; Neutralizing monoclonal antibody; LCA60; Common marmoset; POSTEXPOSURE EFFICACY; NEUTRALIZING ANTIBODY; MOUSE MODEL; INFECTION;
D O I
10.1016/j.antiviral.2019.01.016
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Effective antiviral treatments for MERS-CoV are urgently needed. LCA60 is a MERS-CoV-neutralizing monoclonal antibody isolated from a convalescent MERS patient. Previously, it was shown that treatment with LCA60 resulted in reduced disease and virus titers in mouse models of MERS-CoV infection. Here, we tested the prophylactic efficacy of LCA60 in the common marmoset model of MERS-CoV infection. Intravenous administration of LCA60 one day before virus challenge resulted in high levels of MERS-CoV-neutralizing activity in circulating blood. Clinically, there was a moderate benefit of treatment with LCA60 including reduced respiratory involvement. Although viral lung loads were not reduced in LCA60-treated animals as compared to controls, there were fewer pathological changes in the lungs. Thus, prophylactic LCA60 treatment could be implemented to reduce disease burden in contacts of confirmed MERS-CoV patients.
引用
收藏
页码:70 / 74
页数:5
相关论文
共 50 条
[31]   Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV [J].
Sheahan, Timothy P. ;
Sims, Amy C. ;
Leist, Sarah R. ;
Schafer, Alexandra ;
Won, John ;
Brown, Ariane J. ;
Montgomery, Stephanie A. ;
Hogg, Alison ;
Babusis, Darius ;
Clarke, Michael O. ;
Spahn, Jamie E. ;
Bauer, Laura ;
Sellers, Scott ;
Porter, Danielle ;
Feng, Joy Y. ;
Cihlar, Tomas ;
Jordan, Robert ;
Denison, Mark R. ;
Baric, Ralph S. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[32]   T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV [J].
Liu, William J. ;
Zhao, Min ;
Liu, Kefang ;
Xu, Kun ;
Wong, Gary ;
Tan, Wenjie ;
Gao, George F. .
ANTIVIRAL RESEARCH, 2017, 137 :82-92
[33]   Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection [J].
Raj, V. Stalin ;
Okba, Nisreen M. A. ;
Gutierrez-Alvarez, Javier ;
Drabek, Dubravka ;
van Dieren, Brenda ;
Widagdo, W. ;
Lamers, Mart M. ;
Widjaja, Ivy ;
Fernandez-Delgado, Raul ;
Sola, Isabel ;
Bensaid, Albert ;
Koopmans, Marion P. ;
Segales, Joaquim ;
Osterhaus, Albert D. M. E. ;
Bosch, Berend Jan ;
Enjuanes, Luis ;
Haagmans, Bart L. .
SCIENCE ADVANCES, 2018, 4 (08)
[34]   Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction [J].
Omrani, Ali S. ;
Al-Tawfiq, Jaffar A. ;
Memish, Ziad A. .
PATHOGENS AND GLOBAL HEALTH, 2015, 109 (08) :354-362
[35]   Detection of MERS-CoV antigen on formalin-fixed paraffin-embedded nasal tissue of alpacas by immunohistochemistry using human monoclonal antibodies directed against different epitopes of the spike protein [J].
Haverkamp, Ann-Kathrin ;
Bosch, Berend J. ;
Spitzbarth, Ingo ;
Lehmbecker, Annika ;
Te, Nigeer ;
Bensaid, Albert ;
Segales, Joaquim ;
Baumgaertner, Wolfgang .
VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY, 2019, 218
[36]   Generation and characterization of a monoclonal antibody against MERS-CoV targeting the spike protein using a synthetic peptide epitope-CpG-DNA-liposome complex [J].
Park, Byoung Kwon ;
Maharjan, Sony ;
Lee, Su In ;
Kim, Jinsoo ;
Bae, Joon-Yong ;
Park, Man-Seong ;
Kwon, Hyung-Joo .
BMB REPORTS, 2019, 52 (06) :397-402
[37]   Bioinformatics analysis on potential anti-viral targets against spike protein of MERS-CoV Subtitle: Potential epitopes in MERS-CoV S Protein [J].
Li, Yan-Hua ;
Gao, Hainv ;
Xiao, Yunfeng ;
Weng, Tianhao ;
Yu, Dongshan ;
Hu, Chenyu ;
Yao, Hang-Ping ;
Li, Lan-Juan .
2018 NINTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY IN MEDICINE AND EDUCATION (ITME 2018), 2018, :67-71
[38]   Receptor-binding domain of MERS-CoV with optimal immunogen dosage and immunization interval protects human transgenic mice from MERS-CoV infection [J].
Wang, Yufei ;
Tai, Wanbo ;
Yang, Jie ;
Zhao, Guangyu ;
Sun, Shihui ;
Tseng, Chien-Te K. ;
Jiang, Shibo ;
Zhou, Yusen ;
Du, Lanying ;
Gao, Jimin .
HUMAN VACCINES & IMMUNOTHERAPEUTICS, 2017, 13 (07) :1615-1624
[39]   Characterization of anti-MERS-CoV antibodies against various recombinant structural antigens of MERS-CoV in an imported case in China [J].
Wang, Wenling ;
Wang, Huijuan ;
Deng, Yao ;
Song, Tie ;
Lan, Jiaming ;
Wu, Guizhen ;
Ke, Changwen ;
Tan, Wenjie .
EMERGING MICROBES & INFECTIONS, 2016, 5
[40]   Utilizing sinapic acid as an inhibitory antiviral agent against MERS-CoV PLpro [J].
Shahid, Mudassar ;
Alaofi, Ahmed L. ;
Ansari, Mushtaq Ahmad ;
Ahmad, Sheikh Fayaz ;
Alsuwayeh, Saleh ;
Taha, Ehab ;
Raish, Mohammad .
SAUDI PHARMACEUTICAL JOURNAL, 2024, 32 (04)