Effective time-independent analysis for quantum kicked systems

被引:14
作者
Bandyopadhyay, Jayendra N. [1 ]
Sarkar, Tapomoy Guha [1 ]
机构
[1] Birla Inst Technol & Sci, Dept Phys, Pilani 333031, Rajasthan, India
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 03期
关键词
PHASE-TRANSITIONS; PERIODIC-ORBITS; INSULATOR; DRIVEN; CHAOS;
D O I
10.1103/PhysRevE.91.032923
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a mapping of potentially chaotic time-dependent quantum kicked systems to an equivalent approximate effective time-independent scenario, whereby the system is rendered integrable. The time evolution is factorized into an initial kick, followed by an evolution dictated by a time-independent Hamiltonian and a final kick. This method is applied to the kicked top model. The effective time-independent Hamiltonian thus obtained does not suffer from spurious divergences encountered if the traditional Baker-Cambell-Hausdorff treatment is used. The quasienergy spectrum of the Floquet operator is found to be in excellent agreement with the energy levels of the effective Hamiltonian for a wide range of system parameters. The density of states for the effective system exhibits sharp peaklike features, pointing towards quantum criticality. The dynamics in the classical limit of the integrable effective Hamiltonian shows remarkable agreement with the nonintegrable map corresponding to the actual time-dependent system in the nonchaotic regime. This suggests that the effective Hamiltonian serves as a substitute for the actual system in the nonchaotic regime at both the quantum and classical level.
引用
收藏
页数:6
相关论文
共 40 条
[1]  
[Anonymous], 2010, REV MOD PHYS
[2]  
[Anonymous], Quantum Phase Transitions-Rosenbaum Lab, DOI DOI 10.1017/CBO9780511973765
[3]   Quantum Criticality and Dynamical Instability in the Kicked-Top Model [J].
Bastidas, Victor Manuel ;
Perez-Fernandez, Pedro ;
Vogl, Malte ;
Brandes, Tobias .
PHYSICAL REVIEW LETTERS, 2014, 112 (14)
[4]   Excited-state quantum phase transitions in Dicke superradiance models [J].
Brandes, Tobias .
PHYSICAL REVIEW E, 2013, 88 (03)
[5]   Excited state quantum phase transitions in many-body systems [J].
Caprio, M. A. ;
Cejnar, P. ;
Iachello, F. .
ANNALS OF PHYSICS, 2008, 323 (05) :1106-1135
[6]   Quantum fluids of light [J].
Carusotto, Iacopo ;
Ciuti, Cristiano .
REVIEWS OF MODERN PHYSICS, 2013, 85 (01) :299-366
[7]   Monodromy and excited-state quantum phase transitions in integrable systems: collective vibrations of nuclei [J].
Cejnar, Pavel ;
Macek, Michal ;
Heinze, Stefan ;
Jolie, Jan ;
Dobes, Jan .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (31) :L515-L521
[8]   Impact of quantum phase transitions on excited-level dynamics [J].
Cejnar, Pavel ;
Stransky, Pavel .
PHYSICAL REVIEW E, 2008, 78 (03)
[9]  
Chaudhury S, 2009, NATURE, V461, P768, DOI [10.1038/πature08396, 10.1038/nature08396]
[10]   Quantum control of the hyperfine spin of a Cs atom ensemble [J].
Chaudhury, Souma ;
Merkel, Seth ;
Herr, Tobias ;
Silberfarb, Andrew ;
Deutsch, Ivan H. ;
Jessen, Poul S. .
PHYSICAL REVIEW LETTERS, 2007, 99 (16)