Steam reforming of methanol for ultra-pure H2 production in a membrane reactor: Techno-economic analysis

被引:56
作者
Kim, Sehwa [1 ]
Yun, Su-Won [2 ]
Lee, Boreum [1 ]
Heo, Juheon [1 ]
Kim, Kihyung [3 ]
Kim, Yong-Tae [2 ]
Lim, Hankwon [4 ]
机构
[1] Catholic Univ Daegu, Dept Adv Mat & Chem Engn, 13-13 Hayang Ro, Gyongsan 38430, Gyeongbuk, South Korea
[2] Pusan Natl Univ, Sch Mech Engn, 2 Busandaehak Ro 63beon Gil, Busan 46241, South Korea
[3] Gen Elect Power, 4200 Wildwood Pkwy, Atlanta, GA 30339 USA
[4] Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, 50 UNIST Gil, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
Steam reforming of methanol; Membrane reactor; Process simulation; Techno-economic analysis (TEA); HYDROGEN-PRODUCTION; RENEWABLE ENERGY; FUEL; CO2; CATALYSTS; PRESSURE; ETHANOL; GAS; CU/ZNO/AL2O3; ADSORPTION;
D O I
10.1016/j.ijhydene.2018.08.087
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Process simulation and design as well as economic analysis were carried out to evaluate technical and economic feasibility of steam reforming of methanol in a membrane reactor (MR) for ultra-pure H-2 production. Using a commercial process simulator, Aspen HYSYS (R), comparative studies were conducted to investigate the effect of operating conditions including the H-2 permeance (1 x 10(-5) - 6 x 10(-1) mol m(-2) S-1 Pa-1), a H2O sweep gas flow rate (1-20 kmol h(-1)), and a reaction temperature (448-493 K) in a conventional packed-bed reactor (PBR) and the MR using a previously reported reaction kinetics. Improved performances such as methanol conversions and H-2 yields were observed in the MR compared to the PBR and several design guidelines for the MR were obtained to develop H-2 separation membranes with optimal H-2 permeance and to select a suitable H2O sweep gas flow rate. In addition, economic analysis based on itemized cost estimations was conducted for a small sized H-2 fueling station by calculating a unit H-2 production cost for both the PBR and the MR reflecting a current economic status in Korea. As a result, a cost saving of about 23% was obtained in the MR (7.24 $ kgH(2)(-1)) compared to the PBR (9.37 $ kgH(2)(-1)) confirming the benefit of employing the MR for ultra-pure H-2 production. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2330 / 2339
页数:10
相关论文
共 65 条
[1]   Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst:: a kinetic analysis and strategies for suppression of CO formation [J].
Agrell, J ;
Birgersson, H ;
Boutonnet, M .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :249-257
[2]   Internal combustion engines fueled by natural gas - hydrogen mixtures [J].
Akansu, SO ;
Dulger, Z ;
Kahraman, N ;
Veziroglu, TN .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (14) :1527-1539
[3]   A 1 degrees x1 degrees distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950-1990 [J].
Andres, RJ ;
Marland, G ;
Fung, I ;
Matthews, E .
GLOBAL BIOGEOCHEMICAL CYCLES, 1996, 10 (03) :419-429
[4]   Acetate as a carbon source for hydrogen production by photosynthetic bacteria [J].
Barbosa, MJ ;
Rocha, JMS ;
Tramper, J ;
Wijffels, RH .
JOURNAL OF BIOTECHNOLOGY, 2001, 85 (01) :25-33
[5]   Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst [J].
Basile, A. ;
Parmaliana, A. ;
Tosti, S. ;
Iulianelli, A. ;
Gallucci, F. ;
Espro, C. ;
Spooren, J. .
CATALYSIS TODAY, 2008, 137 (01) :17-22
[6]   Global Warming Energy, Environmental Pollution, and the Impact of Power Electronics [J].
Bose, Bimal K. .
IEEE INDUSTRIAL ELECTRONICS MAGAZINE, 2010, 4 (01) :6-17
[7]   Carbon molecular sieve membranes supported on non-modified ceramic tubes for hydrogen separation in membrane reactors [J].
Briceno, Kelly ;
Iulianelli, Adolfo ;
Montane, Daniel ;
Garcia-Valls, Ricard ;
Basile, Angelo .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (18) :13536-13544
[8]   Renewable energy today and tomorrow [J].
Bull, SR .
PROCEEDINGS OF THE IEEE, 2001, 89 (08) :1216-1226
[9]   Energy resources and global development [J].
Chow, J ;
Kopp, RJ ;
Portney, PR .
SCIENCE, 2003, 302 (5650) :1528-1531
[10]   Carbon Capture and Sequestration [J].
Chu, Steven .
SCIENCE, 2009, 325 (5948) :1599-1599