Convective vortices and dust devils at the MSL landing site: Annual variability

被引:52
|
作者
Kahanpaa, H. [1 ,2 ]
Newman, C. [3 ]
Moores, J. [4 ]
Zorzano, M. -P. [5 ,6 ]
Martin-Torres, J. [6 ,7 ]
Navarro, S. [5 ]
Lepinette, A. [5 ]
Cantor, B. [8 ]
Lemmon, M. T. [9 ]
Valentin-Serrano, P. [7 ]
Ullan, A. [10 ]
Schmidt, W. [1 ]
机构
[1] Finnish Meteorol Inst, Helsinki, Finland
[2] Aalto Univ, Sch Elect Engn, Espoo, Finland
[3] Ashima Res Inc, Pasadena, CA USA
[4] York Univ, Earth & Space Sci & Engn, N York, ON, Canada
[5] CSIC INTA, Ctr Astrobiol, Madrid, Spain
[6] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Lulea, Sweden
[7] CSIC UGR, Inst Andaluz Ciencias Tierra, Granada, Spain
[8] Malin Space Sci Syst, San Diego, CA USA
[9] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX USA
[10] Univ Alcala, Escuela Politecn Super, Dept Teoria Senal & Comunicac, Madrid, Spain
关键词
SCIENCE LABORATORY MISSION; PLANETARY BOUNDARY-LAYER; LARGE-EDDY SIMULATIONS; GALE CRATER; MARS PATHFINDER; STATISTICAL DISTRIBUTION; INTERANNUAL VARIABILITY; THERMAL INERTIA; PRESSURE DROPS; ART;
D O I
10.1002/2016JE005027
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Two hundred fifty-two transient drops in atmospheric pressure, likely caused by passing convective vortices, were detected by the Rover Environmental Monitoring Station instrument during the first Martian year of the Mars Science Laboratory (MSL) landed mission. These events resembled the vortex signatures detected by the previous Mars landers Pathfinder and Phoenix; however, the MSL observations contained fewer pressure drops greater than 1.5 Pa and none greater than 3.0 Pa. Apparently, these vortices were generally not lifting dust as only one probable dust devil has been observed visually by MSL. The obvious explanation for this is the smaller number of strong vortices with large central pressure drops since according to Arvidson et al. [2014] ample dust seems to be present on the surface. The annual variation in the number of detected convective vortices followed approximately the variation in Dust Devil Activity (DDA) predicted by the MarsWRF numerical climate model. This result does not prove, however, that the amount of dust lifted by dust devils would depend linearly on DDA, as is assumed in several numerical models of the Martian atmosphere, since dust devils are only the most intense fraction of all convective vortices on Mars, and the amount of dust that can be lifted by a dust devil depends on its central pressure drop. Sol-to-sol variations in the number of vortices were usually small. However, on 1 Martian solar day a sudden increase in vortex activity, related to a dust storm front, was detected.
引用
收藏
页码:1514 / 1549
页数:36
相关论文
共 50 条
  • [1] Convective vortices and dust devils at the Phoenix Mars mission landing site
    Ellehoj, M. D.
    Gunnlaugsson, H. P.
    Taylor, P. A.
    Kahanpaa, H.
    Bean, K. M.
    Cantor, B. A.
    Gheynani, B. T.
    Drube, L.
    Fisher, D.
    Harri, A. -M.
    Holstein-Rathlou, C.
    Lemmon, M. T.
    Madsen, M. B.
    Malin, M. C.
    Polkko, J.
    Smith, P. H.
    Tamppari, L. K.
    Weng, W.
    Whiteway, J.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2010, 115
  • [2] Large-Eddy Simulations of Dust Devils and Convective Vortices
    Spiga, Aymeric
    Barth, Erika
    Gu, Zhaolin
    Hoffmann, Fabian
    Ito, Junshi
    Jemmett-Smith, Bradley
    Klose, Martina
    Nishizawa, Seiya
    Raasch, Siegfried
    Rafkin, Scot
    Takemi, Tetsuya
    Tyler, Daniel
    Wei, Wei
    SPACE SCIENCE REVIEWS, 2016, 203 (1-4) : 245 - 275
  • [3] Large-Eddy Simulations of Dust Devils and Convective Vortices
    Aymeric Spiga
    Erika Barth
    Zhaolin Gu
    Fabian Hoffmann
    Junshi Ito
    Bradley Jemmett-Smith
    Martina Klose
    Seiya Nishizawa
    Siegfried Raasch
    Scot Rafkin
    Tetsuya Takemi
    Daniel Tyler
    Wei Wei
    Space Science Reviews, 2016, 203 : 245 - 275
  • [4] Convective Vortices and Dust Devils Detected and Characterized by Mars 2020
    Hueso, R.
    Newman, C. E.
    del Rio-Gaztelurrutia, T.
    Munguira, A.
    Sanchez-Lavega, A.
    Toledo, D.
    Apestigue, V.
    Arruego, I.
    Vicente-Retortillo, A.
    Martinez, G.
    Lemmon, M.
    Lorenz, R.
    Richardson, M.
    Viudez-Moreiras, D.
    de la Torre-juarez, M.
    Rodriguez-Manfredi, J. A.
    Tamppari, L. K.
    Murdoch, N.
    Navarro-Lopez, S.
    Gomez-Elvira, J.
    Baker, M.
    Pla-Garcia, J.
    Harri, A. M.
    Hieta, M.
    Genzer, M.
    Polkko, J.
    Jaakonaho, I.
    Makinen, T.
    Stott, A.
    Mimoun, D.
    Chide, B.
    Sebastian, E.
    Banfield, D.
    Lepinette-Malvite, A.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2023, 128 (02)
  • [5] On the statistical distribution of pressure drops in convective vortices: Applications to martian dust devils
    Kurgansky, M. V.
    ICARUS, 2019, 317 : 209 - 214
  • [6] POSSIBLE DUST DEVILS, VORTICES ON MARS
    RYAN, JA
    LUCICH, RD
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1983, 88 (NC15) : 1005 - 1011
  • [7] Characteristics of convective vortices and dust devils at gale crater on Mars during MY33
    Uttam, Shefali
    Sheel, Varun
    Singh, D.
    Newman, C. E.
    Lemmon, M. T.
    PLANETARY AND SPACE SCIENCE, 2022, 213
  • [8] MATADOR 2002: A pilot field experiment on convective plumes and dust devils
    Renno, NO
    Abreu, VJ
    Koch, J
    Smith, PH
    Hartogensis, OK
    De Bruin, HAR
    Burose, D
    Delory, GT
    Farrell, WM
    Watts, CJ
    Garatuza, J
    Parker, M
    Carswell, A
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2004, 109 (E7) : E070011 - 10
  • [9] Mineralogy of the MSL Curiosity landing site in Gale crater as observed by MRO/CRISM
    Seelos, Kimberly D.
    Seelos, Frank P.
    Viviano-Beck, Christina E.
    Murchie, Scott L.
    Arvidson, Raymond E.
    Ehlmann, Bethany L.
    Fraeman, Abigail A.
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (14) : 4880 - 4887
  • [10] An estimate of convective vortex activity at the InSight landing site on Mars
    Kurgansky, M., V
    ICARUS, 2021, 358