F(R, G) Cosmology through Noether Symmetry Approach

被引:16
作者
Camci, Ugur [1 ]
机构
[1] Siteler Mahallesi,1307 Sokak, TR-07070 Antalya, Turkey
来源
SYMMETRY-BASEL | 2018年 / 10卷 / 12期
关键词
Noether symmetry approach; FLRW spacetime; action integral; variational principle; first integral; modified theories of gravity; Gauss-Bonnet cosmology; MODIFIED GRAVITY; DARK ENERGY; SUPERNOVAE;
D O I
10.3390/sym10120719
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The F(R, G) theory of gravity, where R is the Ricci scalar and G is the Gauss-Bonnet invariant, is studied in the context of existence the Noether symmetries. The Noether symmetries of the point-like Lagrangian of F(R, G)gravity for the spatially flat Friedmann-Lemaitre-Robertson-Walker cosmological model is investigated. With the help of several explicit forms of the F(R, G) function it is shown how the construction of a cosmological solution is carried out via the classical Noether symmetry approach that includes a functional boundary term. After choosing the form of the F(R, G) function such as the case (i) : F(R, G) = f(0)R(n) + g(0)G(m) and the case (ii) : F(R, G) = f(0)R(n)G(m), where n and m are real numbers, we explicitly compute the Noether symmetries in the vacuum and the non-vacuum cases if symmetries exist. The first integrals for the obtained Noether symmetries allow to find out exact solutions for the cosmological scale factor in the cases (i) and (ii). We find several new specific cosmological scale factors in the presence of the first integrals. It is shown that the existence of the Noether symmetries with a functional boundary term is a criterion to select some suitable forms of F(R, G). In the non-vacuum case, we also obtain some extra Noether symmetries admitting the equation of state parameters w equivalent to p/rho such as w = -1, -2/3,0,1 etc.
引用
收藏
页数:19
相关论文
共 32 条
[1]   Planck 2015 results XVII. Constraints on primordial non-Gaussianity [J].
Ade, P. A. R. ;
Aghanim, N. ;
Arnaud, M. ;
Arrojam, F. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chiang, H. C. ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Combet, C. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. ;
de Bernardis, P. .
ASTRONOMY & ASTROPHYSICS, 2016, 594
[2]   Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band [J].
Ade, P. A. R. ;
Ahmed, Z. ;
Aikin, R. W. ;
Alexander, K. D. ;
Barkats, D. ;
Benton, S. J. ;
Bischoff, C. A. ;
Bock, J. J. ;
Bowens-Rubin, R. ;
Brevik, J. A. ;
Buder, I. ;
Bullock, E. ;
Buza, V. ;
Connors, J. ;
Crill, B. P. ;
Duband, L. ;
Dvorkin, C. ;
Filippini, J. P. ;
Fliescher, S. ;
Grayson, J. ;
Halpern, M. ;
Harrison, S. ;
Hilton, G. C. ;
Hui, H. ;
Irwin, K. D. ;
Karkare, K. S. ;
Karpel, E. ;
Kaufman, J. P. ;
Keating, B. G. ;
Kefeli, S. ;
Kernasovskiy, S. A. ;
Kovac, J. M. ;
Kuo, C. L. ;
Leitch, E. M. ;
Lueker, M. ;
Megerian, K. G. ;
Netterfield, C. B. ;
Nguyen, H. T. ;
O'Brient, R. ;
Ogburn, R. W. ;
Orlando, A. ;
Pryke, C. ;
Richter, S. ;
Schwarz, R. ;
Sheehy, C. D. ;
Staniszewski, Z. K. ;
Steinbach, B. ;
Sudiwala, R. V. ;
Teply, G. P. ;
Thompson, K. L. .
PHYSICAL REVIEW LETTERS, 2016, 116 (03)
[3]   Joint Analysis of BICEP2/Keck Array and Planck Data [J].
Ade, P. A. R. ;
Aghanim, N. ;
Ahmed, Z. ;
Aikin, R. W. ;
Alexander, K. D. ;
Arnaud, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barkats, D. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Bartolo, N. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Benton, S. J. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bischoff, C. A. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Brevik, J. A. ;
Bucher, M. ;
Buder, I. ;
Bullock, E. ;
Burigana, C. ;
Butler, R. C. ;
Buza, V. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chary, R. -R. ;
Chiang, H. C. ;
Christensen, P. R. ;
Colombo, L. P. L. ;
Combet, C. ;
Connors, J. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. .
PHYSICAL REVIEW LETTERS, 2015, 114 (10) :1-17
[4]   Finite-time future singularities in modified Gauss-Bonnet and F(R,G) gravity and singularity avoidance [J].
Bamba, Kazuharu ;
Odintsov, Sergei D. ;
Sebastiani, Lorenzo ;
Zerbini, Sergio .
EUROPEAN PHYSICAL JOURNAL C, 2010, 67 (1-2) :295-310
[5]   Invariances and Conservation Laws Based on Some FRW Universes [J].
Camci, U. ;
Jamal, S. ;
Kara, A. H. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (05) :1483-1494
[6]   Noether symmetries of Bianchi I, Bianchi III, and Kantowski-Sachs spacetimes in scalar-coupled gravity theories [J].
Camci, Ugur ;
Kucukakca, Yusuf .
PHYSICAL REVIEW D, 2007, 76 (08)
[7]   Spherically symmetric solutions in f(R) gravity via the Noether symmetry approach [J].
Capozziello, S. ;
Stabile, A. ;
Troisi, A. .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (08) :2153-2166
[8]   Selection rules in minisuperspace quantum cosmology [J].
Capozziello, S ;
Lambiase, G .
GENERAL RELATIVITY AND GRAVITATION, 2000, 32 (04) :673-696
[9]   Noether symmetry approach in Gauss-Bonnet cosmology [J].
Capozziello, Salvatore ;
De Laurentis, Mariafelicia ;
Odintsov, Sergei D. .
MODERN PHYSICS LETTERS A, 2014, 29 (30)
[10]   Gauss-Bonnet dark energy by Lagrange multipliers [J].
Capozziello, Salvatore ;
Makarenko, Andrey N. ;
Odintsov, Sergei D. .
PHYSICAL REVIEW D, 2013, 87 (08)