The electro-osmotic flow and heat transfer of generalized Maxwell fluids with distributed-order time-fractional characteristics in microtubules under an alternating field

被引:7
作者
Feng, Chenqing [1 ]
Li, Botong [1 ]
Si, Xinhui [1 ]
Wang, Wei [2 ]
Zhu, Jing [1 ]
机构
[1] Univ Sci & Technol, Sch Math & Phys, Beijing 100083, Peoples R China
[2] First Peoples Hosp Foshan, Res Inst Translat Med Mol Funct & Artificial Inte, Dept Radiol, Foshan 528000, Peoples R China
基金
美国国家科学基金会;
关键词
DIFFUSION EQUATION; MAGNETOHYDRODYNAMIC FLOW; VISCOELASTIC FLUIDS; ENTROPY GENERATION; TEMPERATURE; CHANNEL; MICROCHANNEL; INSTABILITY; SIMULATION; PRESSURE;
D O I
10.1063/5.0073752
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The electro-osmotic flow and heat transfer of a Maxwell fluid with distributed-order time-fractional characteristics in a microchannel under an alternating field is investigated, while considering viscous dissipation and Joule heating. The unsteady momentum and energy equations are computed numerically directly using the finite volume method. The accuracy of the numerical method is validated by comparison the constructed velocity distribution with the velocity distribution in previous references. With the time going on, oscillation of alternating current with a constant amplitude will afford periodic velocity distribution. The temperature will periodically increase. Furthermore, the velocity and temperature distributions characteristics of a Newtonian fluid, fractional Maxwell fluid, and generalized Maxwell fluid with time distribution are compared. Finally, the effects of different physical parameters K, S, Br, Ha, lambda, omega, psi(1), psi(2), Pr, and delta on the velocity and heat distributions under an alternating field are discussed.
引用
收藏
页数:23
相关论文
共 69 条
[1]   Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels [J].
Afonso, A. M. ;
Alves, M. A. ;
Pinho, F. T. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2009, 159 (1-3) :50-63
[2]   Distributed adaptive node-specific signal estimation in a wireless sensor network with noisy links [J].
Arce, Fernando de la Hucha ;
Moonen, Marc ;
Verhelst, Marian ;
Bertrand, Alexander .
SIGNAL PROCESSING, 2020, 166
[3]   Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source [J].
Azhar, Waqas Ali ;
Vieru, Dumitru ;
Fetecau, Constantin .
PHYSICS OF FLUIDS, 2017, 29 (08)
[4]  
Caputo M., 1969, ELASTICITA DISSIPAZI
[5]   Towards a mechanism for instability in channel flow of highly shear-thinning viscoelastic fluids [J].
Castillo, Hugo A. ;
Wilson, Helen J. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2017, 247 :15-21
[6]   Effect of Joule heating on electrokinetic transport [J].
Cetin, Barbaros ;
Li, Dongqing .
ELECTROPHORESIS, 2008, 29 (05) :994-1005
[7]   The effect of Joule-heating-induced buoyancy on the electrohydrodynamic instability in a fluid layer with electrical conductivity gradient [J].
Chang, Min-Hsing ;
Ruo, An-Cheng ;
Chen, Falin ;
Chang, Sen-Tsun .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (17-18) :3837-3845
[8]   Thermal transport of electromagnetohydrodynamic in a microtube with electrokinetic effect and interfacial slip [J].
Chen, Xingyu ;
Jian, Yongjun ;
Xie, Zhiyong ;
Ding, Zhaodong .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2018, 540 :194-206
[9]   Analysis of blood flow characteristics in fractal vascular network based on the time fractional order [J].
Chen, Yanli ;
Zhang, Xueqing ;
Ren, Liuxing ;
Geng, Yuanyuan ;
Bai, Guiqiang .
PHYSICS OF FLUIDS, 2021, 33 (04)
[10]   Numerical simulation of the planar extrudate swell of pseudoplastic and viscoelastic fluids with the streamfunction and the VOF methods [J].
Comminal, Raphael ;
Pimenta, Francisco ;
Hattel, Jesper H. ;
Alves, Manuel A. ;
Spangenberg, Jon .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2018, 252 :1-18