Remarks on the global regularity for the super-critical 2D dissipative quasi-geostrophic equation

被引:21
|
作者
Yu, Xinwei [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
quasi-geostrophic equation; regularity conditions; super-critically dissipative;
D O I
10.1016/j.jmaa.2007.06.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we apply the method used in the recent elegant proof by Kiselev, Nazarov and Volberg of the well-posedness of critically dissipative 2D quasi-geostrophic equation to the super-critical case. We prove that if the initial value satisfies parallel to del theta(0)parallel to(1-2s)(L infinity)parallel to theta(0)parallel to(2s)(L infinity) < c(s) for some small number c(s) > 0, where s is the power of the fractional Laplacian, then no finite time singularity will occur for the super-critically dissipative 2D quasi-geostrophic equation. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:359 / 371
页数:13
相关论文
共 50 条