Blow-Up Criterion and Examples of Global Solutions of Forced Navier-Stokes Equations

被引:1
作者
Wu, Di [1 ]
机构
[1] Univ Paris Diderot, CNRS, UMR 7586, Inst Math Jussieu Paris Rive Gouche, F-75205 Paris, France
关键词
Navier-Stokes equation; Besov class; Long-time behavior; Regularity; LP-SOLUTIONS; POSEDNESS; STABILITY; SPACE;
D O I
10.1007/s10440-020-00326-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we first show a blow-up criterion for solutions to the Navier-Stokes equations with a time-independent force by using the profile decomposition method. Based on the orthogonal properties related to the profiles, we give some examples of global solutions to the Navier-Stokes equations with a time-independent force, whose initial data are large.
引用
收藏
页码:99 / 122
页数:24
相关论文
共 50 条
[41]   Vortex Filament Solutions of the Navier-Stokes Equations [J].
Bedrossian, Jacob ;
Germain, Pierre ;
Harrop-Griffiths, Benjamin .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2023, 76 (04) :685-787
[42]   Navier-Stokes equations, stability and minimal perturbations of global solutions [J].
Rusin, W. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (01) :115-124
[43]   GLOBAL SOLUTIONS TO THE NON-LOCAL NAVIER-STOKES EQUATIONS [J].
Azevedo, Joelma ;
Pozo, Juan Carlos ;
Viana, Arlucio .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (05) :2515-2535
[44]   Blow-up of dynamically restricted critical norms near a potential Navier-Stokes singularity [J].
Barker, Tobias ;
Fernandez-Dalgo, Pedro Gabriel ;
Prange, Christophe .
MATHEMATISCHE ANNALEN, 2024, 389 (02) :1517-1543
[45]   Sums of large global solutions to the incompressible Navier-Stokes equations [J].
Chemin, Jean-Yves ;
Gallagher, Isabelle ;
Zhang, Ping .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 681 :65-82
[46]   GLOBAL REGULAR SOLUTIONS TO THE NAVIER-STOKES EQUATIONS WITH LARGE FLUX [J].
Renclawowicz, Joanna ;
Zajaczkowski, Wojciech .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 :1234-1243
[47]   Global stability of large solutions for the Navier-Stokes equations with Navier boundary conditions [J].
Benvenutti, Maicon J. ;
Ferreira, Lucas C. F. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 43 :308-322
[48]   Smooth solutions of the Navier-Stokes equations [J].
Pokhozhaev, S. I. .
SBORNIK MATHEMATICS, 2014, 205 (02) :277-290
[49]   On the regularity of solutions to the Navier-Stokes equations [J].
Lewalle, J .
IUTAM SYMPOSIUM ON REYNOLDS NUMBER SCALING IN TURBULENT FLOW, 2004, 74 :241-244
[50]   A local smoothness criterion for solutions of the 3D Navier-Stokes equations [J].
Robinson, James C. ;
Sadowski, Witold .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2014, 131 :159-178