Blow-Up Criterion and Examples of Global Solutions of Forced Navier-Stokes Equations

被引:1
作者
Wu, Di [1 ]
机构
[1] Univ Paris Diderot, CNRS, UMR 7586, Inst Math Jussieu Paris Rive Gouche, F-75205 Paris, France
关键词
Navier-Stokes equation; Besov class; Long-time behavior; Regularity; LP-SOLUTIONS; POSEDNESS; STABILITY; SPACE;
D O I
10.1007/s10440-020-00326-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we first show a blow-up criterion for solutions to the Navier-Stokes equations with a time-independent force by using the profile decomposition method. Based on the orthogonal properties related to the profiles, we give some examples of global solutions to the Navier-Stokes equations with a time-independent force, whose initial data are large.
引用
收藏
页码:99 / 122
页数:24
相关论文
共 50 条
[31]   On the stability of global solutions to Navier-Stokes equations in the space [J].
Auscher, P ;
Dubois, S ;
Tchamitchian, P .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (06) :673-697
[32]   Asymptotics and stability for global solutions to the Navier-Stokes equations [J].
Gallagher, I ;
Iftimie, D ;
Planchon, F .
ANNALES DE L INSTITUT FOURIER, 2003, 53 (05) :1387-+
[34]   Some global regular solutions to Navier-Stokes equations [J].
Zajaczkowski, W. M. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (02) :123-151
[35]   Global solutions for the Navier-Stokes equations in the rotational framework [J].
Iwabuchi, Tsukasa ;
Takada, Ryo .
MATHEMATISCHE ANNALEN, 2013, 357 (02) :727-741
[36]   Global regularity for some classes of large solutions to the Navier-Stokes equations [J].
Chemin, Jean-Yves ;
Gallagher, Isabelle ;
Paicu, Marius .
ANNALS OF MATHEMATICS, 2011, 173 (02) :983-1012
[37]   LOGARITHMICALLY IMPROVED BLOW-UP CRITERIA FOR THE 3D NONHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH VACUUM [J].
Hou, Qianqian ;
Xu, Xiaojing ;
Ye, Zhuan .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
[38]   ON POSSIBLE ISOLATED BLOW-UP PHENOMENA AND REGULARITY CRITERION OF THE 3D NAVIER-STOKES EQUATION ALONG THE STREAMLINES [J].
Chan, Chi Hin ;
Yoneda, Tsuyoshi .
METHODS AND APPLICATIONS OF ANALYSIS, 2012, 19 (03) :211-242
[39]   Brezis-Gallouet-Wainger Type Inequalities and Blow-Up Criteria for Navier-Stokes Equations in Unbounded Domains [J].
Nakao, Kohei ;
Taniuchi, Yasushi .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 359 (03) :951-973
[40]   Non-uniqueness of Leray solutions of the forced Navier-Stokes equations [J].
Albritton, Dallas ;
Brue, Elia ;
Colombo, Maria .
ANNALS OF MATHEMATICS, 2022, 196 (01) :415-455